DOI QR코드

DOI QR Code

Adsorption of Hg(II) from aqueous solutions by thiol-functionalized polymer-coated magnetic particles

  • Jainae, Kunawoot (Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University) ;
  • Sukpirom, Nipaka (Department of Chemistry, Faculty of Science, Chulalongkorn University) ;
  • Fuangswasdi, Saowarux (Department of Chemistry, Faculty of Science, Chulalongkorn University) ;
  • Unob, Fuangfa (Department of Chemistry, Faculty of Science, Chulalongkorn University)
  • Received : 2014.06.07
  • Accepted : 2014.08.24
  • Published : 2015.05.25

Abstract

A selective adsorbent for Hg(II) was prepared by coating $CoFe_2O_4$ particles with polystyrene and further modified with 2-(3-(2-aminoethylthio)propylthio)ethanamine. The coating method did not alter the saturation magnetization value of the adsorbents and it improved particle acid resistance and adsorption efficiency. The adsorbent could adsorb Hg(II) in a wide pH range with optimum pH of 7-8. The adsorption of Hg(II) followed Langmuir isotherm and pseudo-second order kinetics with the maximum adsorption capacity of $0.42mmol\;Hg\;g^{-1}$. Showing a selectivity in Hg(II) adsorption over co-existing ions, these adsorbents could be reused without significant efficiency loss over at least ten consecutive trials.

Keywords

References

  1. L.N.H. Arakaki, V.S. Augusto Filha, K.S. de Sousa, F.P. Aguiar, M.G. da Fonseca, J.G.P. Espinola, Thermochim. Acta 440 (2006) 176. https://doi.org/10.1016/j.tca.2005.11.004
  2. M. Puanngam, F. Unob, J. Hazard. Mater. 154 (2008) 578. https://doi.org/10.1016/j.jhazmat.2007.10.090
  3. Q.-F. Lu, M.-R. Huang, X.-G. Li, Chem. Eur. J. 13 (2007) 6009. https://doi.org/10.1002/chem.200700233
  4. X.-G. Li, H. Feng, M.-R. Huang, Chem. Eur. J. 15 (2009) 4573. https://doi.org/10.1002/chem.200802431
  5. X.-G. Li, X.-L. Ma, J. Sun, M.-R. Huang, Langmuir 25 (2009) 1675. https://doi.org/10.1021/la802410p
  6. M.-R. Huang, H.-J. Lu, X.-G. Li, J. Mater. Chem. 22 (2012) 17685. https://doi.org/10.1039/c2jm32361c
  7. R.D. Ambashta, M. Sillanpaa, J. Hazard. Mater. 180 (2010) 38. https://doi.org/10.1016/j.jhazmat.2010.04.105
  8. P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, J. Colloid Interface Sci. 345 (2010) 234. https://doi.org/10.1016/j.jcis.2010.01.087
  9. B.Y. Song, Y. Eom, T.G. Lee, Appl. Surf. Sci. 257 (2011) 4754. https://doi.org/10.1016/j.apsusc.2010.12.156
  10. O. Hakami, Y. Zhang, C.J. Banks, Water Res. 46 (2012) 3913. https://doi.org/10.1016/j.watres.2012.04.032
  11. S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu, J. Zhou, Chem. Eng. J. 226 (2013) 30. https://doi.org/10.1016/j.cej.2013.04.060
  12. Y. Wang, X. Teng, J. Wang, H. Yang, Nano Lett. 3 (2003) 789. https://doi.org/10.1021/nl034211o
  13. G. Li, J. Fan, R. Jiang, Y. Gao, Chem. Mater. 16 (2004) 1835. https://doi.org/10.1021/cm034777d
  14. Y. Sun, X. Ding, Z. Zheng, X. Cheng, X. Hu, Y. Peng, Eur. Polym. J. 43 (2007) 762. https://doi.org/10.1016/j.eurpolymj.2006.10.021
  15. K. Jainae, K. Sanuwong, J. Nuangjamnong, N. Sukpirom, F. Unob, Chem. Eng. J. 160 (2010) 586. https://doi.org/10.1016/j.cej.2010.03.080
  16. S. Lu, R. Qu, J. Forcada, Mater. Lett. 63 (2009) 770. https://doi.org/10.1016/j.matlet.2008.12.045
  17. G. Dodi, D. Hritcu, G. Lisa, M.I. Popa, Chem. Eng. J. 203 (2012) 130. https://doi.org/10.1016/j.cej.2012.06.133
  18. L. Li, S. Tang, D. Ding, N. Hu, S. Yang, S. He, Y. Wang, Y. Tan, J. Sun, J. Nanosci. Nanotechnol. 12 (2012) 8407. https://doi.org/10.1166/jnn.2012.6668
  19. Q. Dai, M. Lam, S. Swanson, R.-H.R. Yu, D.J. Milliron, T. Topuria, P.-O. Jubert, A. Nelson, Langmuir 26 (2010) 17546. https://doi.org/10.1021/la103042q
  20. Z.L. Lui, Z.H. Ding, K.L. Yao, J. Tao, G.H. Du, Q.H. Lu, X. Wang, F.L. Gong, X. Chen, J. Magn. Magn. Mater. 265 (2003) 98. https://doi.org/10.1016/S0304-8853(03)00230-0
  21. S.Y. Mak, D.H. Chen, Macromol. Rapid Commun. 26 (2005) 1567. https://doi.org/10.1002/marc.200500397
  22. Y.C. Chang, D.H. Chen, J. Colloid Interface Sci. 283 (2005) 446. https://doi.org/10.1016/j.jcis.2004.09.010
  23. N.P. Brandon, P.A. Francis, J. Jeffrey, G.H. Kelsall, Q. Yin, J. Electroanal. Chem. 497 (2001) 18. https://doi.org/10.1016/S0022-0728(00)00445-9
  24. J.L. Barriada, R. Herrero, React. Funct. Polym. 68 (2008) 1609. https://doi.org/10.1016/j.reactfunctpolym.2008.09.002
  25. S. Lagergren, Kungliga Svenska Vetenskapsakademiens Handlingar, Band 24 (1898) 1.
  26. Y.S. Ho, G. McKay, Process Biochem. 34 (1999) 451. https://doi.org/10.1016/S0032-9592(98)00112-5
  27. Y.S. Ho, G. McKay, Process Biochem. 38 (2003) 1047. https://doi.org/10.1016/S0032-9592(02)00239-X
  28. Y.S. Ho, G. McKay, Water Res. 34 (2000) 735. https://doi.org/10.1016/S0043-1354(99)00232-8
  29. W.S. Wan Nagh, A. Kamari, Y.J. Koay, Int. J. Biol. Macromol. 34 (2000) 155.
  30. M. Alkan, O. Demirbas, M. Dogan, Microporous Mesoporous Mater. 101 (2007) 388. https://doi.org/10.1016/j.micromeso.2006.12.007
  31. D. Sun, X. Zhang, Y. Wu, T. Liu, Int. J. Environ. Sci. Technol. 10 (2013) 799. https://doi.org/10.1007/s13762-012-0130-y
  32. M.A. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen, J. Hazard. Mater. 165 (2009) 589. https://doi.org/10.1016/j.jhazmat.2008.10.018
  33. G.L. Dotto, M.L.G. Vieira, L.A.A. Pinto, Ind. Eng. Chem. Res. 51 (2012) 6862. https://doi.org/10.1021/ie2030757
  34. Y. Ren, X. Wei, M. Zhang, J. Hazard. Mater. 158 (2008) 14. https://doi.org/10.1016/j.jhazmat.2008.01.044
  35. A. Shukla, Y.H. Zhang, P. Dubey, J.L. Margrave, S.S. Shula, J. Hazard. Mater. 95 (2002) 137. https://doi.org/10.1016/S0304-3894(02)00089-4
  36. I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361. https://doi.org/10.1021/ja02242a004
  37. K. Sanghamitra, A.K. Gupta, Chem. Eng. J. 122 (2006) 93. https://doi.org/10.1016/j.cej.2006.06.002
  38. D. Sarkar, M.E. Essington, K.C. Misra, Soil Sci. Soc. Am. J. 64 (2000) 1968. https://doi.org/10.2136/sssaj2000.6461968x
  39. J.A. Dean, Lange's Handbook of Chemistry, 13th ed., Mc Graw-Hill Book Co., Singapore, 1987.
  40. A.E. Greenberg, L.S. Clescerl, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 18th ed., EPS Group. Inc., New York, NY, USA, 1982.
  41. M. Hadavifar, N. Bahramifar, H. Younesi, Q. Li, Chem. Eng. J. 237 (2014) 217. https://doi.org/10.1016/j.cej.2013.10.014

Cited by

  1. Fe-Mn-Ce/ceramic powder composite catalyst for highly volatile elemental mercury removal in simulated coal-fired flue gas vol.25, pp.None, 2015, https://doi.org/10.1016/j.jiec.2014.11.015
  2. Using a novel adsorbent macrocyclic compound cucurbit[8]uril for Pb 2+ removal from aqueous solution vol.50, pp.None, 2015, https://doi.org/10.1016/j.jes.2016.04.029
  3. Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification vol.35, pp.None, 2016, https://doi.org/10.1016/j.jiec.2015.12.038
  4. Isotherms and kinetic studies on adsorption of Hg(II) ions onto Ziziphus spina-christi L. from aqueous solutions vol.5, pp.2, 2015, https://doi.org/10.1515/gps-2015-0103
  5. Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin vol.57, pp.39, 2016, https://doi.org/10.1080/19443994.2015.1090914
  6. Highly promoted removal of Hg(ii) with magnetic CoFe2O4@SiO2 core–shell nanoparticles modified by thiol groups vol.7, pp.62, 2017, https://doi.org/10.1039/c7ra06163c
  7. Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4 nanocomposites vol.92, pp.1, 2015, https://doi.org/10.1002/jctb.4990
  8. Surface-Tailored Nanocellulose Aerogels with Thiol-Functional Moieties for Highly Efficient and Selective Removal of Hg(II) Ions from Water vol.5, pp.12, 2015, https://doi.org/10.1021/acssuschemeng.7b03188
  9. Surface-Tailored Nanocellulose Aerogels with Thiol-Functional Moieties for Highly Efficient and Selective Removal of Hg(II) Ions from Water vol.5, pp.12, 2015, https://doi.org/10.1021/acssuschemeng.7b03188
  10. New acrylamide‐based monomer containing metal chelating units: Homopolymer grafted magnetite nanoparticles via ATRP for the magnetic removal of Co(II) ions vol.29, pp.4, 2015, https://doi.org/10.1002/pat.4231
  11. Surface‐initiated atom transfer radical polymerization of a new rhodanine‐based monomer for rapid magnetic removal of Co(II) ions from aqueous solutions vol.29, pp.7, 2015, https://doi.org/10.1002/pat.4307
  12. Preparation and Thermal Decomposition Kinetics of Novel Silane Coupling Agent with Mercapto Group vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6089065
  13. Catalytic activity of surface‐functionalized nanoscale nickel zinc multiferrites: potential vector for water purification vol.95, pp.3, 2020, https://doi.org/10.1002/jctb.6259
  14. Effective decontamination of As(V), Hg(II), and U(VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism vol.27, pp.12, 2015, https://doi.org/10.1007/s11356-020-07945-8
  15. Response surface methodology for heavy metals removal by tioglycolic-modified Zn-Fe layer double hydroxide as a magnetic recyclable adsorbent vol.74, pp.9, 2015, https://doi.org/10.1007/s11696-020-01149-7