DOI QR코드

DOI QR Code

Sensitivity Analysis of 6S-Based Look-Up Table for Surface Reflectance Retrieval

  • Lee, Chang Suk (Department of Spatial Information Engineering, Pukyong National University) ;
  • Yeom, Jong Min (Satellite Information Research Center, Korea Aerospace Research Institute) ;
  • Lee, Han Lim (Department of Spatial Information Engineering, Pukyong National University) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Han, Kyung-Soo (Department of Spatial Information Engineering, Pukyong National University)
  • Received : 2014.10.29
  • Accepted : 2015.01.27
  • Published : 2015.01.31

Abstract

We created a look-up table (LUT) based on the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer model, which reduces large errors in the surface reflectance retrieval under high solar zenith angle (SZA) conditions. The LUT was calculated in $10^{\circ}$ SZA intervals containing pre-computed atmospheric correction coefficients as a function of discretized pre-defined input parameters. In order to validate the performance of the LUT, we compared the retrieved surface reflectance using the LUT against a retrieval performed using the simplified method of atmospheric correction (SMAC). These results were validated against MODIS reflectance data (MOD09). The surface reflectance obtained using the LUT was highly correlated with the MOD09, with a coefficient of determination ($R^2$) of 0.88 (red band) and 0.94 (NIR). The retrieved surface reflectance had a root mean-squared error of 0.0132 (red band) and 0.0191 (NIR). Accuracy of surface reflectance retrieved using our LUT with a $10^{\circ}$ SZA interval was better than that of the obtained using SMAC. However, certain errors were still present particularly at high SZAs. In order to increase the accuracy at high SZAs, new LUT was computed with a finer SZA interval ($5^{\circ}$) at high SZAs. In both red and NIR bands, the $R^2$, fine SZA interval LUT (0.92) were compared to the coarse SZA interval LUT (0.74) of around $65^{\circ}$. Additionally, the run time for surface reflectance retrievals with our LUT was almost comparable to that of the SMAC, an operational model. This study demonstrates that proper SZAs interval for making LUT in high SZA range.

Keywords

Acknowledgement

Grant : Development of Geostationary Meteorological Satellite Ground Segment

Supported by : NMSC (National Meteorological Satellite Centre)

References

  1. Chen, P. -Y., R. Srinivasan, G. Fedosejevs, and J. R. Kiniry, 2003: Evaluation different NDVI composite techniques using NOAA-14 AVHRR data. Int. J. Remote Sens., 24, 3403-3412, doi:10.1080/0143116021000021279.
  2. Du, Y., P. M. Teillet, and J. Cihlar, 2002: Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ., 82: 123-134, doi: 10.1016/S0034-4257(02)00029-9.
  3. D'Almeida, G. A., P. Koepke, and E. P. Shettle, 1991: Atmospheric aerosols: global climatology and radiative characteristics. Hampton: A. Deepak Pub.
  4. Fraser, R. S., R. A. Ferrare, Y. J. Kaufman, B. L. Markham, and S. Mattoo, 1992: Algorithm for atmospheric corrections of aircraft and satellite imagery. Int. J. Remote Sens., 13, 541-557, doi: 10.1080/014311692-08904056.
  5. Gao, B. C., M. J. Montes, Z. Ahmad, and C. O. Davis, 2000: Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl. Optics, 39, 887-896, doi: 10.1364/AO.39.000887.
  6. Hadjimitsis, D. G., C. R. I. Clayton, and V. S. Hope, 2004: An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. Int. J. Remote Sens., 20, 3651-3674, doi: 10.1080/01431160310001647993.
  7. Kotchenova, S. Y., and E. F. Vermote, 2007: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part 2: Homogeneous Lambertian and anisotropic surfaces. Appl. Optics, 46, 4455-4464, doi: 10.1364/AO.46.004455.
  8. Kotchenova, S. Y., E. F. Vermote, R. Matarrese, and F. J. Klemm, Jr., 2006: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part 1: Path radiance. Appl. Optics, 45: 6762-6774, doi: 10.1364/AO.45.006762.
  9. Liang, S., H. Fang, and M. Chen, 2001: Atmospheric Correction of Landsat ETM+ Land Surface Imagery - Part I: Methods. IEEE Trans. Geosci. Remote Sens., 39, 2490-2498, doi: 10.1109/36.964986.
  10. Liang, S., H. Fang, M. Chen, C. J. Shuey, C. Walthall, C. Daughtry, J. Morisette, C. Schaaf, and A. Strahler, 2002: Validating MODIS land surface reflectance and albedo products: methods and preliminary results. Remote Sens. Environ., 83, 149-162, doi: 10.1016/S0034-4257(02)00092-5.
  11. Lu, D., P. Mausel, E. Brondizio, and E. Moran, 2002: Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. Int. J. Remote Sens., 23, 2651-2671, doi: 10.1080/01431160110109642.
  12. Lyapustin, A., John Martonchik, Yujie Wang, Istvan Laszlo, and Sergey Korkin, 2011: Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res., 116, D03210, doi:10.1029/2010JD014985.
  13. Nunes, A. S. L., A. R. S. Marcal, and R. A. Vaughan, 2008: Fast over-land atmospheric correction of visible and near-infrared satellite image. Int. J. Remote Sens., 12, 3523-3531, doi: 10.1080/01431160701592445.
  14. Proud, S. R., R. Fensholt, M. O. Rasmussen, and I. Sandholt, 2010a: A comparison of the effectiveness of 6S and SMAC in correcting for atmospheric interference of Meteosat Second Generation images. J. Geophys. Res., 115, D17209, doi:10.1029/2009JD013693.
  15. Proud, S. R., M. O. Rasmussen, R. Fensholt, I. Sandholt, C. Shisanya, W. Mutero, C. Mbow, and A. Anyamba, 2010b: Improving the SMAC atmospheric correction code by analysis of Meteosat Second Generation NDVI and surface reflectance data. Remote Sens. Environ., 114, 1687-1698, doi: 10.1016/j.rse.2010.02.020.
  16. Rahman, H., and G. Dedieu, 1994: SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens., 15, 123-143, doi: 10.1080/01431169408954055.
  17. Rautiainen, M., and P. Stenberg, 2005: Application of photon recollision probability in coniferous canopy reflectance simulations. Remote Sens. Environ., 96, 98-107, doi: 10.1016/j.rse.2005.02.009.
  18. Sobrino, J. A., N. Raissouni, and Z. -L. Li, 2001: A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ., 75, 256-266, doi: 10.1016/S0034-4257(00)00171-1.
  19. Sobrino, J. A., J. C. Jimenez-Munoz, and L. Paolini, 2004: Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ., 90, 434-440, doi: 10.1016/j.rse.2004.02.003.
  20. Tan, K. C., H. S. Lim, M. Z. Matjafri, and K. Adbullah, 2012: A comparison of radiometric correction techniques in the evaluation between LST and NDVI in Landsat imagery. Environ. Monit. Assess., 184, 3813-3829, doi: 10.1007/s10661-011-2226-0.
  21. Thome, K. J., B. Markham, J. Barker, P. Slater, and S. Biggar, 1997: Radiometric Calibration of Landsat. Photogramm. Eng. Rem. S., 63, 835-858.
  22. Yoo, J. M., M. J. Jeong, Y. M. Hur, and D. B. Shin, 2010: Improved fog detection from satellite in the presence of clouds. Asia-Pac. J. Atmos. Sci., 46: 29-40. https://doi.org/10.1007/s13143-010-0004-5
  23. Vermote, E. F., and A. Vermeulen, 1999: Atmospheric Correction Algorithm: SPECTRAL REFLECTANCES (MOD09) version 4.0. Algorithm Technical Background Document (ATBD). http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf.
  24. Vermote, E. F., S. Y. Kotchenova, and J. P. Ray, 2011: MODIS Surface Reflectance User's Guide. http://modis-sr.ltdri.org/products/MOD09_UserGuide_v1_3.pdf.
  25. Vermote, E. F., and D. Tanre, J. L. Deuze, M. Herman, and J.-J. Morcrette, 1997: Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens., 35, 675-686, doi: 10.1109/36.581987.
  26. Vermote, E. F., D. Tanre, J. J. Deuze, M. Herman, J. Morcrette, and S. Y. Kotchenove, 2006: Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV), 6S user guide, version 3. http://6s.ltdri.org/6S_code2_thiner_stuff/6s_ltdri_org_manual.htm.
  27. Wang, M., 2003: An efficient method for multiple radiative transfer computations and the lookup table generation. J. Quant. Spectrosc. Ra., 78, 471-480, doi: 10.1016/S0022-4073(02)00278-9.
  28. Xiao, X., B. Braswell, Q. Zhang, S. Boles, S. Frolking, and B. Moore III, 2003: Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote Sens. Environ., 84, 385-392, doi: 10.1016/S0034-4257(02)00129-3.
  29. Zhao, W., Masayuki Tamura, and T. Hidenori, 2000: Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code. Remote Sens. Environ., 76, 202-212, doi: 10.1016/S0034-4257(00)00204-2.

Cited by

  1. Comparison of NDVIs from GOCI and MODIS Data towards Improved Assessment of Crop Temporal Dynamics in the Case of Paddy Rice vol.7, pp.9, 2015, https://doi.org/10.3390/rs70911326
  2. An estimation of surface reflectance for Advanced Himawari Imager (AHI) data using 6SV vol.32, pp.1, 2016, https://doi.org/10.7780/kjrs.2016.32.1.7
  3. Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data vol.8, pp.5, 2016, https://doi.org/10.3390/rs8050369
  4. New Approach for Snow Cover Detection through Spectral Pattern Recognition with MODIS Data vol.2017, pp.None, 2015, https://doi.org/10.1155/2017/4820905
  5. Surface albedo from the geostationary Communication, Ocean and Meteorological Satellite (COMS)/Meteorological Imager (MI) observation system vol.55, pp.1, 2015, https://doi.org/10.1080/15481603.2017.1360578
  6. Spectral Overlap Correction Using Weighted Deconvolution for Improved Dark Object Technique for Correction of EO1-Hyperion Data vol.46, pp.3, 2015, https://doi.org/10.1007/s12524-017-0706-6
  7. Development of Land Surface Albedo Algorithm for the GK-2A/AMI Instrument vol.12, pp.15, 2020, https://doi.org/10.3390/rs12152500
  8. KOMPSAT-3/3A 채널별 6SV 조견표의 지표반사도 민감도 분석 vol.36, pp.5, 2015, https://doi.org/10.7780/kjrs.2020.36.5.1.11