DOI QR코드

DOI QR Code

Flexible Solar Cells with a Cu(In,Ga)Se2 Absorber Grown by Using a Se Thermal Cracker on a Polyimide Substrate

  • PARK, Soo-Jeong (Electronics and Telecommunications Research Institute, Korea and Korea University of Science and Technology) ;
  • CHUNG, Yong-Duck (Electronics and Telecommunications Research Institute, Korea and Korea University of Science and Technology) ;
  • LEE, Woo-Jung (Electronics and Telecommunications Research Institute) ;
  • CHO, Dae-Hyung (Electronics and Telecommunications Research Institute) ;
  • WI, Jae-Hyung (Electronics and Telecommunications Research Institute) ;
  • HAN, Won-Seok (Electronics and Telecommunications Research Institute) ;
  • CHO, Yousuk (JMON. Co.,Ltd.) ;
  • YOON, Jong-man (JMON. Co.,Ltd.)
  • Received : 2013.12.07
  • Accepted : 2014.03.18
  • Published : 2015.01.15

Abstract

A polyimide substrate was used for the fabrication of flexible $Cu(In,Ga)Se_2$ (CIGS) thin-film solar cells. To deposit a stable Mo layer on a flexible substrate, we measured the residual stress in the polyimide film after the deposition of a Mo layer by varying the process pressure. A CIGS absorber was deposited on a Mo layer at a growth temperature below $500^{\circ}C$ by using a Se thermal cracker and various cracking zone temperatures ($T_C$) to improve the reactivity of Se due to the low process temperature. To investigate the effect of Na on the efficiency of a flexible CIGS solar cell, we deposited a Mo:Na layer as a source of Na between the Mo layer and the polyimide substrate. In case of the flexible CIGS solar cell fabricated under the condition of a $T_C$ of $800^{\circ}C$ with a Mo:Na layer, the highest cell efficiency was achieved at 10.76% without an anti-reflection coating, which is significantly increased by 4% compared to the efficiency of a solar cell without the Mo:Na layer.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. M. Pagliaro, G. Palmisano and R. Ciriminna, Flexible Solar Cells (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008).
  2. A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, Science 285, 692 (1999). https://doi.org/10.1126/science.285.5428.692
  3. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Renoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger G and A. N. Tiwari, Nat. Mater. 10, 857 (2011). https://doi.org/10.1038/nmat3122
  4. F. Kessler and D. Rudmann, Sol. Energy 77, 685 (2004). https://doi.org/10.1016/j.solener.2004.04.010
  5. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka and K. Matsubara, Prog. Photovolt: Res. Appl. 18, 453 (2010). https://doi.org/10.1002/pip.969
  6. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Prog. Photovolt: Res. Appl. 19, 894 (2011). https://doi.org/10.1002/pip.1078
  7. M. Kawamura, T. Fujita, A. Yamada and M. Konagai, J. Cryst. Growth 311, 753 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.091
  8. S. J. Park, D. H. Cho, J. H. Kim, Y. S. Cho, J. M. Yoon and Y. D. Chung, 22th International Photovoltaic Science and Engineering Conference and Exhibition (PVSEC) (Hangzhou, Nov., 2012).
  9. K. H. Kim, K. H. Yun, J. H. Kim and B. T. Ahn, Electrochem. Solid-State Lett. 9, A382 (2006). https://doi.org/10.1149/1.2208011
  10. S. H. Wei, S. B. Zhang and A. Zunger, J. Appl. Phys. 85, 7214 (1999). https://doi.org/10.1063/1.370534
  11. S. Ishizuka, A. Yamada, M. M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto and S. Niki, J. Appl. Phys. 106, 034908 (2009). https://doi.org/10.1063/1.3190528
  12. K. Granath, M. Bodegard and L. Stolt, Sol. Energy Mater. Sol. Cells 60, 279 (2000). https://doi.org/10.1016/S0927-0248(99)00089-6
  13. R. Kimura, T. Nakada, P. Fons, A. Yamada, S. Niki, T. Matsuzawa,K. Takahashi and A. Kunioka, Sol. Energy Mater. Sol. Cells 67, 289 (2001). https://doi.org/10.1016/S0927-0248(00)00294-4
  14. Y. D. Chung, D. H. Cho, H. W. Choi, K. S. Lee, B. J. Ahn, J. H. Song and J. Kim, J. Korean Phys. Soc. 61, 1623 (2012). https://doi.org/10.3938/jkps.61.1623
  15. H. A. Al-Thani, F. S. Hasoon, J. L. Alleman and M. M. Al-Jassim, Sharjah Solar Energy Conference (Sharjah, Feb., 2001).
  16. X. Feng, Y. Huang and A. J. Rosakis, J. Appl. Mech. 74, 6 (2007).
  17. J. H. Scofield, A. Dudaa, D. Albina, B. L. Ballardb and P. K. Predeckib, Thin Solid Films 260, 1 (1995). https://doi.org/10.1016/0040-6090(94)09480-2
  18. T. Nakada, T. Kuraishi, T. Inoue and T. Mise, 35th IEEE Photovoltaic Specialists Conference (PVSC) (Honolulu, June, 2010).
  19. D. H. Cho, K. S. Lee, Y. D. Chung, J. H. Kim, S. J. Park and J. Kim, Appl. Phys. Lett. 101, 023901 (2012). https://doi.org/10.1063/1.4733679
  20. J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao and A. Rockett, J. Appl. Phys. 80, 24 (2002).
  21. E. S. Mungan, X. Wang and M. A. Alam, IEEE J. Photovolt. 3, 1 (2013). https://doi.org/10.1109/JPHOTOV.2013.2281143
  22. O. Lundberg, M. Edoff and L. Stolt, Thin Solid Films 480, 1 (2004).
  23. B. Li, Y. Zhang, B. Wang, J. He, L. Wu and Y. Sun, Semicond. Sci. Technol. 27, 065007 (2012). https://doi.org/10.1088/0268-1242/27/6/065007

Cited by

  1. Interface Analysis of Cu(In,Ga)Se2 and ZnS Formed Using Sulfur Thermal Cracker vol.38, pp.2, 2015, https://doi.org/10.4218/etrij.16.2515.0031
  2. Metal-agglomeration-suppressed growth of MoS2 and MoSe2 films with small sulfur and selenium molecules for high mobility field effect transistor applications vol.10, pp.32, 2015, https://doi.org/10.1039/c8nr03778g
  3. Enhanced sulfurization reaction of molybdenum using a thermal cracker for forming two-dimensional MoS2 layers vol.20, pp.23, 2015, https://doi.org/10.1039/c8cp02390e
  4. Advanced materials for flexible solar cell applications vol.8, pp.1, 2015, https://doi.org/10.1515/ntrev-2019-0040
  5. Advanced materials for flexible solar cell applications vol.8, pp.1, 2015, https://doi.org/10.1515/ntrev-2019-0040
  6. Multi-wafer-scale growth of WSe2 films using a traveling flow-type reactor with a remote thermal Se cracker vol.528, pp.None, 2015, https://doi.org/10.1016/j.apsusc.2020.146951