DOI QR코드

DOI QR Code

Radiation Damage of F/M and ODS alloys after Fe3+-ion irradiation at 300℃

  • KANG, Suk Hoon (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • CHUN, Young-Bum (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • NOH, Sanghoon (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • JANG, Jinsung (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • JEONG, Yong-Hwan (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • KIM, Tae Kyu (Nuclear Materials Division, Korea Atomic Energy Research Institute)
  • Received : 2013.12.19
  • Published : 2015.02.15

Abstract

In this study, $Fe^{3+}$ self-ion irradiation is used as means of introducing irradiation damage in ferritic/martensitic (F/M) steel and oxide dispersion strengthened (ODS) steel. The ion accelerator named DuET (at Kyoto University, Japan) was used for irradiation with 6.4 MeV $Fe^{3+}$ ions at $300^{\circ}C$. The total number of accelerated ions was $2.5{\times}10^{20}ions/m^2$, and the maximum damage rates in the F/M and the ODS steels were estimated to be roughly 6 dpa. The irradiation-induced hardness change in the damaged layer was evaluated by using nano-indentation. The F/M steel and the ODS steel commonly exhibited irradiation hardening; however, the irradiation hardening was more active in the F/M steel than in the ODS steel. The microstructure evolutions after the irradiation were investigated; point or line defects were dominantly observed in the F/M steel, while small circular cavities were typically observed in ODS steel.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura and H. Takeuchi, J. Nucl. Mater. 307-311, 260 (2002). https://doi.org/10.1016/S0022-3115(02)01250-3
  2. H. -H. Jin, C. Shin and W. W. Kim, Solid State Phenom. 135, 119 (2008). https://doi.org/10.4028/www.scientific.net/SSP.135.119
  3. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004). https://doi.org/10.1557/jmr.2004.19.1.3
  4. C. Pokor, Y. Brechet, P. Dubuisson, J.-P. Massoud and A. Barbu, J. Nucl. Mater. 326, 19 (2004). https://doi.org/10.1016/j.jnucmat.2003.11.007
  5. M. Matijasevic, E. Lucon and A. Almazouzi, J. Nucl. Mater. 377, 101 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.063
  6. R. Coppola, R. Lindau, M. Magnani, R. P. May, A. Moslang, J.W. Rensman, B. vander Schaaf and M. Valli, Fusion Eng. Des. 75-79, 985 (2005). https://doi.org/10.1016/j.fusengdes.2005.06.079
  7. M. Matijasevic and A. Almazouzi, J. Nucl. Mater. 377, 147 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.061
  8. A. Alamo, V. Lambard, X. Averty, and M. H. Mathon, J. Nucl. Mater. 329-333, 333 (2004). https://doi.org/10.1016/j.jnucmat.2004.05.004
  9. T. Yoshitake, Y. Abe, N. Akasaka, S. Ohtsuka, S. Ukai and A. Kimura, J. Nucl. Mater. 329-333, 342 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.084
  10. S. Yamashita, N. Akasaka and S. Ohnuki, J. Nucl. Mater. 329-333, 377 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.041

Cited by

  1. Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications vol.48, pp.2, 2015, https://doi.org/10.1016/j.net.2015.12.005