DOI QR코드

DOI QR Code

Variation of Aluminum 6056 Alloy Properties with Respect to Heat Treatment and Forging Conditions for Fabrication of Piston Blocks for Automobile

열처리 및 단조조건에 따른 알루미늄 6056 소재의 특성변화 및 자동차의 피스톤 블록 설계

  • Received : 2015.08.19
  • Accepted : 2015.08.31
  • Published : 2015.10.27

Abstract

The mechanical properties and microstructures of Aluminum 6056 alloys were investigated for their use in the fabrication of a piton block. The EN-AW6056 alloys exhibited a tensile strength of 375 MPa for a solution treatment temperature of $550^{\circ}C$ for 2 h followed by an aging treatment at $190^{\circ}C$ for 4 h. The microstructures of the heat treated specimen showed that the $Mg_2Si$ phase with a size of 3~5 um was dispersed throughout the aluminum matrix when the heat treatment was done. Moreover, in order to identify the forgeability of the specimen, upsetting tests were done. For up to 80 % of the upsetting ratio, the specimen maintained its original shape, and at above 80 % of the upsetting ratio, the specimen underwent crack development. The specimen was successfully forged without any defects with the examined material conditions. The material conditions together with the forging conditions are discussed in terms of the microstructures and mechanical properties.

Keywords

References

  1. Z. Wang, H. Li, F. Miao, W. Sun, B. Fang, R. Song and Z. Zheng, Mater. Sci. Eng. A, 590, 267 (2014). https://doi.org/10.1016/j.msea.2013.10.001
  2. J. C. Williams and E. A. Starke Jr., Acta Mater., 51, 5775 (2003). https://doi.org/10.1016/j.actamat.2003.08.023
  3. K. Hockauf, L.W. Meyer, M. Hockauf and T. Halle, J. Mater. Sci., 45, 4754 (2010). https://doi.org/10.1007/s10853-010-4544-y
  4. R. Ghiaasiaan, X. Zeng and S. Shankar, Mater. Sci. Eng. A, 594, 260 (2014). https://doi.org/10.1016/j.msea.2013.11.087
  5. G. Gerstmayr, G. Mori, H. Leitner and W. Eichlseder, Mater. Corros., 61, 379 (2010).
  6. M. Pakdil, G.Cam, M. Kocak and S. Erim, Mater. Sci. Eng. A, 528, 7350 (2011). https://doi.org/10.1016/j.msea.2011.06.010
  7. A. Asserin-Lebert, J. Besson and A. F. Gourgues, Sci. Eng. A, 395, 186 (2005). https://doi.org/10.1016/j.msea.2004.12.018
  8. M. Vivas, P. Lours, C. Levaillant, A. Couret, M. J. Casampve and A. Coujou, Mater. Sci. Eng. A, 235, 664 (1997).
  9. B. Milkereit and M. J. Starink, Mater. Des., 76, 117 (2015). https://doi.org/10.1016/j.matdes.2015.03.055
  10. Ch. Blanc, Y. Roques and G. Mankowski, Corros. Sci., 40, 1019 (1998). https://doi.org/10.1016/S0010-938X(98)00039-0
  11. A. K. Gupta, B. K. Prasad, R. K. Pajnoo and S. Das, Trams. Nonferrous Met. Soc. China, 22, 1041 (2012). https://doi.org/10.1016/S1003-6326(11)61281-8
  12. S. M. Hirth, G. J. Marshall, S. A. Court and D. J. Lloyd, Mater. Sci. Eng. A, 319, 452 (2001).
  13. L. Ding, Z. Zhang, R. E. Sanders, Q. Liu and G. Yang, Mater. Sci. Eng. A, 627, 119 (2015). https://doi.org/10.1016/j.msea.2014.12.086
  14. Y. Tang, L. Zhang and Y. Du, Calphad., 49, 58 (2015). https://doi.org/10.1016/j.calphad.2015.03.002
  15. B. C. Shang, Z. M. Yin, G. Wang, B. Liu and Z.Q. Huang, Mater. Des., 32, 3818 (2011). https://doi.org/10.1016/j.matdes.2011.03.016
  16. D. Schwerdt, B. Pyttel and C. Berger, Procedia Eng., 2, 1505 (2010). https://doi.org/10.1016/j.proeng.2010.03.162