DOI QR코드

DOI QR Code

Study on Cantilever Beam Tip Response with Various Harmonic Frequencies by Using EDISON Co-rotational Plane Beam-Dynamic Tip Load

EDISON Co-rotational Plane Beam-Dynamic Tip Load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • Park, Chul-Woo (Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Joo, Hyun-Shig (Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Ryu, Han-Yeol (Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Shin, Sang-Joon (Mechanical and Aerospace Engineering, Seoul National Univ.)
  • 박철우 (서울대학교 기계항공공학부) ;
  • 주현식 (서울대학교 기계항공공학부) ;
  • 류한열 (서울대학교 기계항공공학부) ;
  • 신상준 (서울대학교 기계항공공학부)
  • Received : 2015.04.21
  • Accepted : 2015.09.07
  • Published : 2015.10.30

Abstract

In this paper, Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

본 논문에서는 Euler-Bernoulli Beam(EB-beam) 및 신속 Fourier 변환을 이용하여 수치분석적 빔 모델 및 Co-rotational plane beam EDISON program(CR-beam)을 이용한 빔 모델의 가진주파수 변화에 따른 외팔보의 자유단 진동 연구를 수행하였다. 위의 두 빔 모델에서의 끝단에서는 진동이 시간이 지남에 따라 감소하다가 정상상태에 이르는 것을 확인하였다. 끝단에서 가진주파수가 증가함에 따라 구조적 감쇠에 의해 변위이 감소하는 경향을 보인다. 감쇠를 고려한 EB-beam과 CR-beam가 정상상태로 진입하는 경향이 비슷하나, 가진주파수는 정상상태가 나타나는 시간과 독립적임을 제시한다.

Keywords

References

  1. Barun, P., Santosha, K.D. (2011) Nonlinear Vibrations and Frequency Response Analysis of a Cantilever Beam under Periodically varying Magnetic Field, Mech. Based Design of Struct. & Mach., 39, pp.378-391. https://doi.org/10.1080/15397734.2011.557972
  2. Thomas, D.L., Wilson, J.M., Wilson, R.R. (1973) Timoshenko Beam Finite Elements, J. Sound & Vib., 31(3), pp.315-330. https://doi.org/10.1016/S0022-460X(73)80276-7
  3. Le, T.N., Battini, J.M., Hjiaj, M. (2011) Efficient Formulation for Dynamics of Corotational 2D Beams, Comput. Mech., 48(2), pp.153-161. https://doi.org/10.1007/s00466-011-0585-6
  4. Craig Jr, R.R., Kurdila, A.J. (2006) Fundamentals of Structural Dynamics, 2nd Edition, pp.200-205.
  5. Singiresu, S.R. (2011) Mechanical Vibrations, 5th Edition, pp.721-728.