DOI QR코드

DOI QR Code

Fabrication of Silver Nanowire-Graphene Oxide Hybrid Transparent Conductive Thin Film with Improved Mechanical Stability

기계적 안정성이 향상된 은나노와이어-그래핀옥사이드 하이브리드 투명 전도성 박막의 제작

  • Kim, Ju-Tae (School of Mechanical Engineering, Korea University) ;
  • Woo, Ju Yeon (School of Mechanical Engineering, Korea University) ;
  • Han, Chang-Soo (School of Mechanical Engineering, Korea University)
  • Received : 2015.03.05
  • Accepted : 2015.08.13
  • Published : 2015.10.01

Abstract

In this study, we used GO (graphene oxide) in order to enhance the adhesion between Ag NWs (nanowires) and substrates. By using a mixture solution of GO and Ag NW, a vacuum filtration process was used to fabricate a 50nm diameter thin film. Next, by using a light annealing process, the mechanical and electrical stability of Ag NW network was improved without any other treatment. The physical properties of the Ag NW - GO hybrid transparent conductive thin film was characterized in terms of a bending test, resistance and transmittance test, and nanoscale imaging using field-emission scanning electron microscopy.

Keywords

References

  1. Hecht, D. S., Hu, L., and Irvin, G., "Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures," Advanced Materials, Vol. 23, No. 13, pp. 1482-1513, 2011. https://doi.org/10.1002/adma.201003188
  2. Lee, J., Lee, I., Kim, T. S., and Lee, J. Y., "Efficient Welding of Silver Nanowire Networks without Post-Processing," Small, Vol. 9, No. 17, pp. 2887-2894, 2013. https://doi.org/10.1002/smll.201203142
  3. Lee, J.-Y., Connor, S. T., Cui, Y., and Peumans, P., "Solution-Processed Metal Nanowire Mesh Transparent Electrodes," Nano Letters, Vol. 8, No. 2, pp. 689-692, 2008. https://doi.org/10.1021/nl073296g
  4. Yu, W. J., Lee, S. Y., Chae, S. H., Perello, D., Han, G. H., et al., "Small Hysteresis Nanocarbon-Based Integrated Circuits on Flexible and Transparent Plastic Substrate," Nano Letters, Vol. 11, No. 3, pp. 1344-1350, 2011. https://doi.org/10.1021/nl104488z
  5. Yu, Z., Niu, X., Liu, Z., and Pei, Q., "Intrinsically Stretchable Polymer Light-Emitting Devices Using Carbon Nanotube-Polymer Composite Electrodes," Advanced Materials, Vol. 23, No. 34, pp. 3989-3994, 2011. https://doi.org/10.1002/adma.201101986
  6. Lipomi, D. J., Lee, J. A., Vosgueritchian, M., Tee, B. C.-K., Bolander, J. A., et al., "Electronic Properties of Transparent Conductive Films of PEDOT: PSS on Stretchable Substrates," Chemistry of Materials, Vol. 24, No. 2, pp. 373-382, 2012. https://doi.org/10.1021/cm203216m
  7. Wang, Y., Yang, R., Shi, Z., Zhang, L., Shi, D., et al., "Super-Elastic Graphene Ripples for Flexible Strain Sensors," ACS Nano, Vol. 5, No. 5, pp. 3645-3650, 2011. https://doi.org/10.1021/nn103523t
  8. Lee, S.-K., Kim, B. J., Jang, H., Yoon, S. C., Lee, C., et al., "Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes," Nano Letters, Vol. 11, No. 11, pp. 4642-4646, 2011. https://doi.org/10.1021/nl202134z
  9. Yu, Z., Li, L., Zhang, Q., Hu, W., and Pei, Q., "Silver Nanowire-Polymer Composite Electrodes for Efficient Polymer Solar Cells," Advanced Materials, Vol. 23, No. 38, pp. 4453-4457, 2011. https://doi.org/10.1002/adma.201101992
  10. Xu, F. and Zhu, Y., "Highly Conductive and Stretchable Silver Nanowire Conductors," Advanced Materials, Vol. 24, No. 37, pp. 5117-5122, 2012. https://doi.org/10.1002/adma.201201886
  11. Yu, Z., Zhang, Q., Li, L., Chen, Q., Niu, X., et al., "Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes," Advanced Materials, Vol. 23, No. 5, pp. 664-668, 2011. https://doi.org/10.1002/adma.201003398
  12. Lee, P., Lee, J., Lee, H., Yeo, J., Hong, S., et al "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network," Advanced Materials, Vol. 24, No. 25, pp. 3326-3332, 2012. https://doi.org/10.1002/adma.201200359
  13. Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., et al., "Transparent, Conductive Carbon Nanotube Films," Science, Vol. 305, No. 5688, pp. 1273-1276, 2004. https://doi.org/10.1126/science.1101243
  14. Yun, Y. S., Kim, D. H., Kim, B., Park, H. H., and Jin, H.-J., "Transparent Conducting Films Based on Graphene Oxide/Silver Nanowire Hybrids with High Flexibility," Synthetic Metals, Vol. 162, No. 15, pp. 1364-1368, 2012. https://doi.org/10.1016/j.synthmet.2012.05.026
  15. Lee, J., Novoselov, K. S., and Shin, H. S., "Interaction between Metal and Graphene: Dependence on the Layer Number of Graphene," ACS Nano, Vol. 5, No. 1, pp. 608-612, 2010. https://doi.org/10.1021/nn103004c
  16. Tantang, H., Ong, J. Y., Loh, C. L., Dong, X., Chen, P., et al., "Using Oxidation to Increase the Electrical Conductivity of Carbon Nanotube Electrodes," Carbon, Vol. 47, No. 7, pp. 1867-1870, 2009. https://doi.org/10.1016/j.carbon.2009.03.005
  17. Lee, J., Lee, P., Lee, H., Lee, D., Lee, S. S., et al., "Very Long Ag Nanowire Synthesis and Its Application in a Highly Transparent, Conductive and Flexible Metal Electrode Touch Panel," Nanoscale, Vol. 4, No. 20, pp. 6408-6414, 2012. https://doi.org/10.1039/c2nr31254a
  18. Garnett, E. C., Cai, W., Cha, J. J., Mahmood, F., Connor, S. T., et al., "Self-Limited Plasmonic Welding of Silver Nanowire Junctions," Nature Materials, Vol. 11, No. 3, pp. 241-249, 2012. https://doi.org/10.1038/nmat3238
  19. Halas, N. J., Lal, S., Chang, W.-S., Link, S., and Nordlander, P., "Plasmons in Strongly Coupled Metallic Nanostructures," Chemical Reviews, Vol. 111, No. 6, pp. 3913-3961, 2011. https://doi.org/10.1021/cr200061k
  20. Hecht, D. S., Hu, L., and Irvin, G., "Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures," Advanced Materials, Vol. 23, No. 13, pp. 1482-1513, 2011. https://doi.org/10.1002/adma.201003188