DOI QR코드

DOI QR Code

A Study on the modeling and operation control of a variable speed synchronous wind power system

가변속 동기형 풍력발전 시스템 모델링 및 운전제어에 대한 연구

  • 허현 (청암대학교 신재생전기제어과) ;
  • 이재학 (청암대학교 소방안전관리과)
  • Received : 2015.06.30
  • Accepted : 2015.08.23
  • Published : 2015.08.31

Abstract

This study performs the dynamic modeling and the simulation of variable speed wind power system and implements the models of wind speed, wind turbine & PMSG, and MPPT & pitch control as well. The simulation of wind turbine was performed by using the power coefficient and other simulation parameters which were extracted with reference to the commercial 5MW class wind turbine data. As the result of this simulation, MPPT control is confirmed, maintaining the maximum power coefficient as far as the rated speed 12[m/s]. Over 12[m/s] wind speed, this wind power system makes it possible to keep the stable output by controlling the pitch angle.

본 논문에서는 가변속 풍력발전시스템의 동적 모델링과 운전제어 시뮬레이션을 수행하였다. 풍속모델, 풍력터빈과 PMSG 모델, MPPT 및 피치 운전제어 모델 등을 구현하였다. 그리고 상용화된 5MW급 풍력터빈 데이터들을 참고하여 실제적인 시스템과 유사한 출력계수 및 가상 운전 조건으로 시뮬레이션 하였다. 시뮬레이션 결과 정격속도 12[m/s]까지 최대출력계수를 유지하면서 최대전력추종을 확인하였다. 또한 12[m/s]이상의 고속 풍속에서는 동적으로 피치 각도를 제어하면서, 정격상태의 안정적인 출력을 유지하였다.

Keywords

References

  1. B. Wu, Y. Lang, N. Zargari, and S. Kouro, Power Conversion and Control of Wind Energy Systems, New Jersey: Institute of Electrical and Electronics Engineers Press, 2011.
  2. M. Singh and S. Santoso, Dynamic Models for Wind Turbines and Wind Power Plants, Austin, Texas, National Renewable Energy Laboratory, 2011.
  3. C. Gavriluta, S. Spataru, and I. Mosincat, C. Citro, I. Candela, P. Rodriguez, "Complete methodology on generating realistic wind speed profiles based on measurements," International Conference on Renewable Energy and Power Quality(ICREPQ), Santiago de Compostela, Spain, March, 2012.
  4. A. Betz, Introduction to the Theory of Flow Machines, Oxford: Pergamon Press, 1966.
  5. S. Heier, Grid Integration of Wind Energy Conversion Systems, Chicester, U.K.: Wiley, 1998.
  6. S. Li, T. A. Haskew, and L. Xu, "Conventional and novel control design for direct driven PMSG wind turbines," Electric Power Systems Research, vol. 80, no. 3, 2010, pp. 328-338. https://doi.org/10.1016/j.epsr.2009.09.016
  7. H. Q. Minh, N. Frederic, E. Najib, and H. Abdelaziz, "Control of permanent magnet synchronous generator wind turbine for stand-alone system using fuzzy logic," Atlantis press, France, pp. 720-727, 2011.
  8. M. Hong, "Study of Maximum Power Point Tracking Controller for Wind Power System," Master's Thesis, University of Ulsan, 2010.
  9. A. Rolan, A. Luna, G. Vazquez, and D. Aguilar, "Modeling of a Variable Speed Wind Turbine with a Permanent Magnet Synchronous Generator", International Symposium on Industrial Electronics 2009, Seoul, Korea, July, 2009, pp. 734-739.
  10. S. K. Park, Y. Kim, K. Ban, and S. Song, "Cloud-based Intelligent Management System for Photovoltaic Power Plants," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 3, 2012, pp. 591-596. https://doi.org/10.13067/JKIECS.2012.7.3.591
  11. S. Ku, K. Kim, J. Park, S. Hong, and K. Park, "Digital Asset Analysis Methodology against Cyber Threat to Instrumentation and Control System in Nuclear Power Plants," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 6, 2011, pp. 839-847.
  12. Y. Yang, Y. Kim, J. Kwun, S. Ku, K. Kim, J. Park, S. Hong, and K. Park, "The Design of Operating System on Wind Power Plant," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 1, 2011, pp. 135-141.
  13. P. Duijsen, P. Bauer, and F. Chen. "Modeling and simulation for wind energy." Proceedings of the Taiwan power electronics conference & exhibition, 2006. Taiwan Power Electronic Association/IEEE Taipei, Jan, 2006.