DOI QR코드

DOI QR Code

Mesochronous Clock Based Synchronizer Design for NoC

위상차 클럭 기반 NoC 용 동기회로 설계

  • 김강철 (전남대학교 전기전자통신컴퓨터공학부) ;
  • Received : 2015.09.15
  • Accepted : 2015.10.23
  • Published : 2015.10.31

Abstract

Network on a chip(NoC) is a communication subsystem between intellectual property(IP) cores in a SoC and improves high performance in the scalability and the power efficiency compared with conventional buses and crossbar switches. NoC needs a synchronizer to overcome the metastability problem between data links. This paper presents a new mesochronous synchronizer(MS) which is composed of selection window generator, selection signal generator, and data buffer. A delay line circuit is used to build selection window in selection window generator based on the delayed clock cycle of transmitted clock and the transmitted clock is compared with local clock to generate a selection signal in the SW(selection window). This MS gets rid of the restriction of metastability by choosing a rising edge or a falling edge of local clock according to the value of selection signal. The simulation results show that the proposed MS operates correctly for all phase differences between a transmitted clock and a local clock.

NoC는 SoC의 IP 코어들 사이에서 통신하는 시스템으로 기존의 버스 시스템이나 크로스바 상호연결 시스템보다 월등히 향상된 성능을 제공한다. 그러나 NoC의 송신부와 수신부 사이에서 데이터 이동 시에 송신부와 수신부 사이에 발생하는 불안정 상태(metastability)는 극복하기 위하여 동기회로가 필요하다. 본 논문에서는 신호 영역 발생기, 선택 신호 발생기와 데이터 버퍼로 구성된 새로운 위상차 동기회로를 설계하였다. 불안정 상태가 없는 선택구간을 구하기 위하여 전송된 클럭을 지연하는 회로가 사용되며, 전송클럭과 지역 클럭을 비교하여 선택신호를 발생한다. 제안된 위상차 동기회로는 선택신호 값에 의하여 지역클럭의 상승 또는 하강 모서리 중의 하나를 선택하여 불안정 상태를 제거한다. 모의실험 결과는 제안된 위상차 동기회로가 전송된 클럭과 지역 클럭의 어떤 위상차에서도 잘 동작하는 것을 보여 주었다.

Keywords

References

  1. M. Heath, W. Burleson, and I. Harris, "Synchro-tokens: A Deterministic GALS Methodology for Chip-Level Debug and Test," IEEE Trans. Computer, vol. 54, no. 12, 2005, pp. 1532-1546. https://doi.org/10.1109/TC.2005.203
  2. K. Kim, "Measurement of Setup and Hond time in a CMOSDFF for a Synchronizer," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 8, 2015, pp. 883-890. https://doi.org/10.13067/JKIECS.2015.10.8.883
  3. M. Bojnordi, N. Madani, M. Semarzade, and A. Afzali-Kusha, "An Efficient Clocking Scheme for On-Chip Communications," Circuits and Systems, 2006. IEEE Asia Pacific Conference on, Singapore, Dec., 2006, pp. 119-122.
  4. D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. Micheli, "NoC synthesis flow for customized domain specific multiprocessor systems-on-chip," IEEE Trans. Parallel and Distributed Systems, vol. 16, issue 2, 2005, pp. 113-129. https://doi.org/10.1109/TPDS.2005.22
  5. W. Dally and J. Poulton, Digital Systems Engineering. Cambridge: Cambridge University Press, 1998.
  6. S. Beer and R. Ginosar, "A new 65nm LP metastability measurment test circuit," 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI), Eilat, Israel, Nov. 2012, pp. 1-4.
  7. R. Ginosar and R. Kol, "Adaptive Synchronization," Proc. of IEEE Int. Conf. on Computer Design, Austin, USA, Oct. 1998. pp. 188-189.
  8. U. Frank, T. Kapshitz, and R. Ginosar, "A Predictive Synchronizer for Periodic Clock Domains," Form Methods Syst. Des. May. 2006, pp. 171-186.
  9. D. Wiklund, "Mesochronous Clocking and Communication in On-Chip Networks," Proc. of the Swedish System-on-Chip Conf. Sweden, Apr. 2003.
  10. F. Mu and C. Svensson, "Self-Tested Self-Synchronization Circuit for Mesochronous Clocking," IEEE Trans. Circuits and Systems, vol. 48, no. 2, 2001, pp. 129-141.
  11. B. Mesgarzadeh and J. Poulton, A new mesochronous clocking scheme for synchronization in SoC," Circuits and Systems, '04. Proceedings of the 2004 International Sympo. on, Vancouver, Canada, May 2004. pp. II-605-II-608,
  12. Y. Semiat and R. Ginosar, "Timing Measurements of Synchronization Circuits," Proc. of the 9th IEEE Int. Symp. on Asynchronous Circuits and Systems (ASYNC'03), Vancouver, Canada, May 2003, pp. 68-77.
  13. K. Kim, "Metastability-free Mesochronous Synchronizer for Networks on Chip," J. of the Korea Institute of Information and Communication Engineering, vol. 16, no. 6, Apr. 2012, pp. 1242-1249. https://doi.org/10.6109/jkiice.2012.16.6.1242
  14. J. Jex and C. Dike, "A fast resolving BiNMOS synchronizer for parallel processor interconnect," IEEE J. of Solid-State Circuits, vol. 30, no. 2, 1995, pp. 133-139. https://doi.org/10.1109/4.341740
  15. M. Alshaikh, D. Kinniment, and A. Yakovlev, "A synchronizer design based on wagging," Microelectronics (ICM), Int. Conf. on Microelectronics, Cairo, Egypt, Dec. 2010, pp. 415-418.
  16. F. Vitullo, N. L'Insalata, E. Petri, S. Saponara, L. FAnucci, M. Casula, R. Locatelli, and M. Coppola, "Low-Complexity Link Microarchitecture for Mesochronous Communication in Networks-on-Chip", IEEE Trans. Computers, vol. 57, no. 9, 2008, pp. 1196-1201. https://doi.org/10.1109/TC.2008.48
  17. I. Loi, F. Angiolini, and L. Benini, "Developing Mesochronous Synchronizers to Enable 3D NoCs," Design, Automation and Test in Europe' 08, Munich, Germany,, Aug. 2008, pp. 1414-1419.
  18. D. Ludovici, A. Strano, D. Bertozzi, L. Benini, and G. Gaydadjiev, "Comparing Tightly and Loosely Coupled Mesochronous Synchronizers in a NoC Switch Architecture," Networks-on-Chip, 3rd ACM/IEEE Int. Symp. La Jolla, USA, May 2009, pp. 244-249.
  19. W. Dally and S. Tell, "The Even/Odd Synchronizer: A Fast, All-Digital, Periodic Synchronizer," Proc. of the IEEE Int. Symp. on Asynchronous Circuits and Systems (ASYNC 2010), Grenoble, France, May 2010, pp. 75-84.
  20. J. Chong, "Design of A New Mesochronous Synchronizer fo Network on Chip," Master's Thesis, Chonnam National University, Aug. 2015.