DOI QR코드

DOI QR Code

Study on Convergence Technique Using the Antimicrobial Resistance and Virulence Genes Analysis in Escherichia coli

대장균의 항균제 내성과 독력 유전자의 분석을 활용한 융합기술연구

  • Han, Jae-Il (Department of Public Health, Graduate School of Dankook University) ;
  • Sung, Hyun-Ho (Department of Clinical Pathology, Dongnam University) ;
  • Park, Chang-Eun (Department of Biomedical Laboratory Science, Namseoul University)
  • 한재일 (단국대학교 일반대학원 보건학과) ;
  • 성현호 (동남보건대학교 임상병리과) ;
  • 박창은 (남서울대학교 임상병리학과)
  • Received : 2015.08.17
  • Accepted : 2015.10.20
  • Published : 2015.10.31

Abstract

This study was conducted to investigate the characteristics of antibiotic resistant E. coli. its antibiotic susceptibility and pathogenicity were analyzed via molecular convergence technique, for the relationship of antibiotic susceptibility and pathogenicity. The 60 isolated strains consisted of ESBL(+)(8) and ESBL(-)(52) strains. The ESBL(+)(8) strains consisted of 2 strains without a pathogenic gene, stb(3), flich7(1), and flich7-eae(2). The ESBL(-)(52) strains consisted of 26 strains without a pathogenic gene, stx1(3), stb(10), flich7(2), eae(2), stx1-flich7(2), stx1-stb(4), flich7-stb(2), and flich7-stb-eae(1). In conclusion, antibiotic resistance is increasingly, Focused on molecular convergence, showed the correlation of pathogenicity with antibiotic resistance was poor. However, It will be able to find the exact pathogenic factor in the future through convergence technique including the analysis of virulence genes.

본 연구는 항균제에 내성을 보이는 대장균의 특성을 알아보기 위해 설사환자에서 분리된 대장균에 대한 항균제 감수성 및 병원성 인자의 상관성을 분자융합적 기술을 통해 조사하였다. 분리한 대장균의 항균제 내성은 60주에서 ESBL(extendede spectrum ${\beta}$-lactamase) positive균주가 8주이고, negative균주는 52주였다. ESBL 양성 8주 중 2주는 병원성 유전자가 검출되지 않았으며, stb(3주), flich7(1주), flich7-eae(2주)로 나타났다. ESBL 음성 52주 중 26주는 병원성 유전자가 검출되지 않았고, stx1(3주), stb(10주), flich7 및 eae(각 2주), stx1-flich7(2주), stx1-stb(4주), flich7-stb(2주), flich7-stb-eae(1주)이었다. 결론적으로 항균제 내성이 증가하는 시대에 분자 융합적 관점에서 독력 유전자의 분포와 항균제 내성과의 관계는 적게 나타났으나, 향후 다양한 독력 유전자의 분석을 통한 융합기술연구가 이루어진다면 보다 정확한 병원성 인자를 추정할 수 있을 것으로 사료된다.

Keywords

References

  1. A. H. Jack, G. A. Robert, F. A. Carlos, "Do antibiotics maintain antibiotic resistance", Drug Discovery Today, Vol. 5, No. 5, pp. 195-204, 2000. https://doi.org/10.1016/S1359-6446(00)01483-5
  2. M. Park, S. D. Park, S. H. Kim, G. L, H. J. Woo, H. W. Kim, B. A, I. H. Jang, Y. Uh, J. B. Kim, "Comparison of Molecular Characteristics of Extended Spectrum ${\beta}$-lactamase Producing Escherichia coli Strains Isolated from Patients with Urinary Tract Infections between 2 Time Periods of 1989 and 2010 at Gangwon Province in Korea", Journal of Experimental & Biomedical Sciences, Vol. 19, No. 3, pp. 275-279, 2013.
  3. S. J. Savarino, A. Fasano, J. Watson, B. M. Martin, M. M. Levine, S. Guandalin, P. Guerry, "Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin", Proc. Natl. Acad. Sci. U.S.A., Vol. 90, No. 7, pp. 3093-3097, 1993. https://doi.org/10.1073/pnas.90.7.3093
  4. H. W. Smith, S. Halls, "Observation by the ligated intestinal segment and oral inoculation methods on Escherichia coli infections in pigs. calves, lambs, and rabbits", J. Pathol. Bacteriol, Vol. 93, No. 2. pp. 499-529, 1967. https://doi.org/10.1002/path.1700930211
  5. M. N. Burgess, R. J. Bywater, C. M. Cowley, N. A. Mullan, P. M. Newsome, "Biological evaluation of a methanol-soluble, heat-stable Escherichia coli enterotoxin in inft mice, pigs, rabbits and calves", Infect. Immun., Vol. 21, No. 2, pp. 526-531, 1978.
  6. F. Scheutz, L. D. Teel, L. Beutin, D. Pierard, G. Buvens, H. Karch, A. Mellmann, A. Caprioli, R. Tozzoli, S. Morabito, N. A. Strockbine, A. R. Melton-Celsa, M. Sanchez, S. Persson, A. D. O'Brien, "Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature", J. Clin. Microbiol, Vol. 50, No. 9, pp. 2951-2963, 2012. https://doi.org/10.1128/JCM.00860-12
  7. D. J. Bolton, "Verocytotoxigenic (Shiga toxinproducing) Escherichia coli : virulence factors and pathigenicity in the farm to fork paradigm", Foodborne Pathog. Dis, Vol. 8, No. 3, pp. 357-365, 2011. https://doi.org/10.1089/fpd.2010.0699
  8. H. Karch, T. Meyer, H. Russmann, J. Heesemann, "Frequent loss of Shiga-like toxin genes in clinical isolates of Escherichia coli upon subcultivation", Infect. Immun., Vol. 60, No. 8, pp. 3464-3467, 1992.
  9. S. Bjork, M. E. Briemer, G. C. Hansson, K. A. Karlsson, H. Leffler, "Structure of blood group glycosphinggolipids of human small intestine. A relation between the expression of fucolipids of epithelial cells and the ABO, Le and Se phenotype of the donor", J. Biol. Chem., Vol. 262, No. 14, pp. 6758-6765, 1987.
  10. D. E Hoey, L. Sharp, C. Currie, C. A. Lingwood, D. L. Gally, D. G. Smith, "Verotoxin 1 binding to intestinal crypt epithelial cells results in localization to lysosomes and abrogation of toxicity", Cell. Microbiol., Vol. 5, No. 2, pp. 85-97, 2003. https://doi.org/10.1046/j.1462-5822.2003.00254.x
  11. M. Johansen, L. O. Andresen, S. E. Jorsal, L. K. Thomsen, T. E. Waddell, C. L. Gyles, "Prevention of edema disease in pigs by vaccination with veritoxin 2e toxoid", Can. J. Vet. Res., Vol. 61, No. 4, pp. 280-285, 1997.
  12. J. G. Mainil, E. Jacquemin, E. Oswald, "Prevalence and identity of cdt-related sequences in necrotoxigenic Escherichia coli", Vet Microbiol, Vol. 94, No. 2, pp. 159-165, 2003. https://doi.org/10.1016/S0378-1135(03)00102-0
  13. B. Kenny, R. DeVinney, M. Stein, D. J. Reinscheid, E. A. Frey, B. B. Finlay, "Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells", Cell, Vol. 91, No. 4. pp. 511-520, 1997. https://doi.org/10.1016/S0092-8674(00)80437-7
  14. OIE Terrestrial Manual, Chapter 1.1.6. -Laboratory methodologies for bacterial antimicrobial susceptibility testing:, pp. 56-65, 2008.
  15. Clinical and Laboratory Standards Institute, Performance standards for antimicrobial susceptibility testing, 21st informational supplement. CLSI document M100-S21. Clinical and Laboratory Standards Institute, Wayne, PA, 2011.
  16. H. J. Doughari, P. A. Ndakidemi, I. S. Human , S. L. Benade. C. McDonald, "Virulence, resistance genes, and transformation amongst environmental isolates of Escherichia coli and Acinetobacter spp.", J Microbiol Biotechnol, Vol. 22, No. 1, pp. 25-33, 2012. https://doi.org/10.4014/jmb.1107.07029
  17. H. Pai, "The characteristics of extended-spectrum $\beta$lactamase in Korea isolates of Enterobacteriaceae", Yonsei. Med. J, Vol. 39, No. 6, pp. 514-519, 1998. https://doi.org/10.3349/ymj.1998.39.6.514
  18. Y. K. Kim, H. Pai, H. J. Lee, S. E. Park, E. H. Choi, J. Kim, J. H. Kim, E. C. Kim, "Bloodstream infections by extended-spectrum ${\beta}$-lactamase producing Escherichia coli and Klebsiella pneumoniae in children: Epidemiology and clinical outcome", Antimicrob. Agents Chemother. Vol. 46, No. 5, pp. 1481-1491, 2002. https://doi.org/10.1128/AAC.46.5.1481-1491.2002
  19. J. W. Lee, J. S. Shin, J. W. Seo, M. A. Lee, S. J. Lee, "Incidence and risk factors for extendedspectrum betalactamase-producing Escherichia coli in community-acquired childhood urinary tract infection, J. Korean Soc. Pediatr. Nephrol. Vol. 8, No. 3, pp. 214-222, 2004.