DOI QR코드

DOI QR Code

Speed estimation of sound-emitted objects through convergence of sound information analysis and smart device technology

음향 정보 분석과 스마트 기기 기술의 융합을 통한 사물의 속력 측정

  • Nam, Yong-Wook (Department of Computer Science, Kwangwoon University) ;
  • Kim, Yong-Hyuk (Department of Computer Science, Kwangwoon University)
  • 남용욱 (광운대학교 컴퓨터과학과) ;
  • 김용혁 (광운대학교 컴퓨터과학과)
  • Received : 2015.08.26
  • Accepted : 2015.10.20
  • Published : 2015.10.31

Abstract

In this paper, we present an algorithm that estimates the speed of a moving object only using its sound information. In general, the speed gun projects the incident light onto a moving object and measures the frequency variation of the scattered light. Then the speed is measured by this frequency difference. In our study, instead of light information, we measure the speed by sound frequency difference when the object is coming and moving away. In our experiments on the speed measurement, on average the error of 6.08% was obtained. Utilizing this algorithm for smart device, we can measure the speed of a moving object without sensor that measures the frequency of the light.

본 논문에서는 움직이는 사물이 내는 소리를 분석하여 속력을 측정하는 알고리즘을 소개한다. 일반적인 속력 측정기는 도플러 효과(Doppler effect)의 원리를 이용하여 움직이는 물체에 입사광을 투사하고, 산란광의 주파수 변화량으로 속력을 측정 하는 방법을 사용하지만, 본 논문에서는 물체가 다가올 때와 멀어질 때 내는 주파수를 측정하고 도플러 효과에 의해 발생한 주파수 차이를 이용하여 물체의 속력을 측정하는 방법을 제시한다. 실제 속력 측정 실험을 했을 때 평균적으로 6.08%의 오차가 발생하였으며, 이를 스마트 기기 어플리케이션 개발 기술과 융합하면 별도의 장치가 없을 때 물체에 입사광을 투사하고 산란광의 주파수를 측정할 수 있는 기능이 없는 스마트 기기에서 물체의 속력을 측정할 수 있다.

Keywords

References

  1. J. G. Dunne, "Laser-based speed measuring device", U.S. Patent No. 5,359,404. Washington, DC: U.S. Patent and Trademark Office, 1994.
  2. L. N. Ridenour, "Radar system engineering", MIT Radiation Lab series, Vol. 1, 1947.
  3. J. Unpingco, "Discrete-Time Fourier Transform.", Python for Signal Processing. Springer International Publishing, pp. 45-55, 2014.
  4. G. D. Bergland, "A guided tour of the fast Fourier transform", IEEE, Spectrum, Vol. 6, No. 7, pp. 41-52, 1969. https://doi.org/10.1109/MSPEC.1969.5213896
  5. J. W. Cooley, J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series." Mathematics of computation, Vol. 19, No. 90, pp. 297-301, 1965. https://doi.org/10.1090/S0025-5718-1965-0178586-1
  6. J. Allen, "Short-term spectral analysis, and modification by discrete Fourier transform", IEEE, Transactions on Acoustics Speech and Signal Processing, Vol. 25, No. 3, pp. 235-238, 1977. https://doi.org/10.1109/TASSP.1977.1162950
  7. https://helpx.adobe.com/audition/using/noise-reduction-restoration-effects.html
  8. O. Cramer, "The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration." The Journal of the Acoustical Society of America, Vol. 93, No. 5, pp. 2510-2516, 1993. https://doi.org/10.1121/1.405827
  9. Thermodo, https://play.google.com/store/apps/details?id=com.robocatapps.thermodo
  10. Doppler Effect, http://hyperphysics.phy-astr.gsu.edu/hbase/sound/dopp.html
  11. Standard tuning frequency (Standard musical pitch), http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3601, 1975.
  12. T. Tolonen, M. Karjalainen, "A computationally efficient multipitch analysis model", Speech and Audio Processing, IEEE Transactions on, Vol. 8, No. 6, pp. 708-716, 2000. https://doi.org/10.1109/89.876309
  13. P. A. Hetherington, A. R. Groves, "System for suppressing rain noise", U.S. Patent, No. 7,949,522, 2011.
  14. P. A. Hetherington, L. Xueman, P. Zakarauskas, "Method and apparatus for suppressing wind noise", U.S. Patent Application 10/410, 736, 2003.
  15. J. Bitzer, K. U. Simmer, K. D. Kammeyer, "Multimicrophone noise reduction by post-filter and superdirective beamformer", Proc. Int. Workshop on Acoustic Echo and Noise Control (IWAENC), pp. 100-103, 1999.

Cited by

  1. The ICT convergence agriculture automated machines designed for smart agriculture vol.14, pp.2, 2016, https://doi.org/10.14400/JDC.2016.14.2.141
  2. Development of Integrated Infant Care Management App Prototype System in Mobile Environments vol.7, pp.1, 2016, https://doi.org/10.15207/JKCS.2016.7.1.031
  3. Research on Web standards compliance and professional level of domestic Web Developer vol.14, pp.4, 2016, https://doi.org/10.14400/JDC.2016.14.4.201
  4. Range-free localization algorithm between sensor nodes based on the Radical Line for Sensor Networks vol.14, pp.8, 2016, https://doi.org/10.14400/JDC.2016.14.8.261
  5. A Study of Power Line Communication-based Smart Outlet System Expandable at Home vol.19, pp.5, 2016, https://doi.org/10.9717/kmms.2016.19.5.901