DOI QR코드

DOI QR Code

블루베리·복분자와 오디 그리고 이들 부산물 주정 추출물의 이화학적 특성 및 페놀화합물 함량 비교

Comparison of Chemical Properties and Phenolic Compound for Ethanol Extract of Blueberry, Bokbunja and Mulberry and their Pomaces

  • 강다래 (전북대학교 동물생명공학과) ;
  • 정이형 (전북생물산업진흥원) ;
  • 심관섭 (전북대학교 동물생명공학과) ;
  • 신대근 (베리앤바이오식품연구소)
  • 투고 : 2015.07.13
  • 심사 : 2015.08.25
  • 발행 : 2015.09.30

초록

본 연구는 베리와 그 부산물들의 영양학적 가치와 더불어 이들의 식품 내 활용 가능성을 확인하고자 국내생산 베리 중 대표적 베리인 블루베리, 오디 그리고 복분자와 그들 부산물의 이화학적 특성과 페놀화합물 함량변화를 비교/분석하였다. 수분함량은 통 베리 시료가 그들 부산물의 함량보다 유의적으로 높게 나타났으며, 특히 복분자와 그 부산물의 수분함량은 차이가 가장 컸다. pH는 오디와 오디 부산물에서 각각 4.03, 5.18로 가장 높게 나타났다. 총 폴리페놀과 플라보노이드의 함량은 블루베리 부산물에서 24.81와 24.13 mg/g으로 가장 높았으며, 안토시아닌 함량은 오디 부산물에서 53.27 ug/g으로 가장 높았다. Cyanin chloride는 오디와 복분자 과일에서만 측정되었으며, epigallocatechin, gallocatechin과 isorhamnetin은 블루베리에서만 측정되었다. Catechin (hydrate)과 epicatechin의 경우에는 블루베리를 제외한 오디와 복분자의 통 과일과 부산물에서 유의적인 차이가 나타났으며, gallic acid는 오디에서, quercetin 3-D-galactoside는 블루베리에서 통 과일과 부산물간 유의적인 차이가 조사되었다. Apigenin, luteolin은 오디류에서만 측정되었으며 특히 부산물에서 그 함량이 높았다. Naringenin은 각각의 베리 부산물에서 함량이 높았으나, rutin (trihydrate)과 quercetin은 블루베리를 제외한 오디와 복분자의 통 베리에서 부산물보다 높게 검출되었다. Kaempferol 함량은 통 오디에서 15 ng/g으로 가장 높았다. 본 실험에 이용된 베리들은 성숙도 및 환경에 따라 서로 다른 결과를 나타날 수도 있겠으나, 본 연구결과는 각각의 통 베리의 유효성분을 조사한 것 뿐 아니라 그들의 부산물까지도 가축 사료 첨가제 및 식품 소재로써 활용 가능성을 나타낸 연구라 할 수 있다.

In this study, the chemical properties and phenolic compound of blueberry, bokbunja and mulberry and their pomace were determined to develop them as functional food materials. Water content of individual whole berry was ranged from 84.25-86.20%, and water content was significantly high in whole berries rather than their pomace (p<0.01). Additionally, each berry and its pomace's pH was 3.32-5.18. Among them, whole mulberry showed the highest pH which is 5.18 (p<0.01). Total polyphenol and flavonoid contents were the greatest in blueberry pomace and they were 24.81 mg/g and 2.13 mg/g, respectively (p<0.01). However, mulberry pomace generated the greatest anthocyanin content compared to others (p<0.01). In phenolic compound profiles, cyanin chloride was detected in mulberry and bokbunja. Epigallocatechin, gallocatechin and isorhamnetin were found only in blueberry. Catechin (hydrate) and epicatechin were greater in pomaces than whole berries except blueberry (p<0.01), otherwise, significantly great rutin (trihydrate) and quercetin contents were found in whole berries as compared to their pomace except blueberry (p<0.01). Gallic acid was significantly greatest in mulberry (p<0.01) and quercetin 3-D-galactoside was significantly greatest in blueberry (p<0.01). Apigenin and luteolin were traced in mulberry, and mulberry pomace showed greater apigenin and luteolin contents than whole mulberry (p<0.01). Naringenin was greater in pomaces than whole berries (p<0.01). As a result, it was found that all berry extracts used in this study were able to be applied as functional food materials and their pomace contained high phenolic compound enough to be a good source of phytochemical for nutraceutical use.

키워드

참고문헌

  1. Butkhup, L. and S. Samappito. 2011. Phenolic constituents of extract from mao luang seeds and skin-pulp residue and its antiradical and antimicrobial capacities. J. Food Biochem. 35: 1671-1679. https://doi.org/10.1111/j.1745-4514.2010.00491.x
  2. Donno, D., A. Cerutti, I. Prgomet, M. Mellano, and G. Beccaro. 2015. Foodomics for mulberry fruit (Morus spp.): Analytical fingerprint as antioxidants' and health properties' determination tool. Food Res. Int. 69: 179-188. https://doi.org/10.1016/j.foodres.2014.12.020
  3. Ercisli, S. and E. Orhan. 2007. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 103: 1380-1384. https://doi.org/10.1016/j.foodchem.2006.10.054
  4. Fazaeli, M., Z. Emam-Djomeh, A. K. Ashtari, and M. Omid. 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod. process 90: 667-675. https://doi.org/10.1016/j.fbp.2012.04.006
  5. Gunduz, K., S. Serce, and J. F. Hancock. 2015. Variation among highbush and rabbiteye cultivars of blueberry for fruit quality and phytochemical characteristics. J. Food Compos. Anal. 38: 69-79. https://doi.org/10.1016/j.jfca.2014.09.007
  6. Heinrich, M., T. Dhanji, and I. Casselman. 2011. Acai (Euterpe oleracea Mart.)-A phytochemical and pharmacological assessment of the species' health claims. Phytochemistry Letters 4: 10-21. https://doi.org/10.1016/j.phytol.2010.11.005
  7. Hogan, S., H. Chung, L. Zhang, J. Li, Y. Lee, Y. Dai, and K. Zhou. 2010. Antiproliferative and antioxidant properties of anthocyanin-rich extract from acai. Food Chem. 118: 208-214. https://doi.org/10.1016/j.foodchem.2009.04.099
  8. Choi, H. R., S. J. Lee, J. H. Lee, J. W. Kwon, H. K. Lee, J. T. Jeong, and T. B. Lee. 2013. Cholesterol-lowering Effects of Unripe Black Raspberry Water Extract. J. Korean Soc. Food Sci. Nutr. 42: 1899-1914. https://doi.org/10.3746/jkfn.2013.42.12.1899
  9. Juan, C., K. Jianquan, T. Junni, C. Zijian, and L. Ji. 2012. The Profile in Polyphenols and Volatile Compounds in Alcoholic Beverages from Different Cultivars of Mulberry. J. Food Sci. 77: C430-C436. https://doi.org/10.1111/j.1750-3841.2011.02593.x
  10. Kaewkaen, P., T. Tong-un, J. Wattanathorn, S. Muchimapura, W. Kaewrueng, and S. Wongcharoenwanakit. 2012. Mulberry Fruit Extract Protects against Memory Impairment and Hippocampal Damage in Animal Model of Vascular Dementia. Evidence-based Complementary & Alternative Medicine (eCAM) 2012: 1-9.
  11. Kang, T. H., J. Y. Hur, H. B. Kim, J. H. Ryu, and S. Y. Kim. 2006. Neuroprotective effects of the cyanidin-3-O-${\beta}$-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neuroscience Letters 391: 122-126. https://doi.org/10.1016/j.neulet.2005.08.053
  12. Kim, S., C. K. Kim, K. S. Lee, J. H. Kim, H. Hwang, D. Jeoung, J. Choe, M. H. Won, H. Lee, K. S. Ha, Y. G. Kwon, and Y. M. Kim. 2013. Aqueous extract of unripe Rubus coreanus fruit attenuates atherosclerosis by improving blood lipid profile and inhibiting NF-${\kappa}B$ activation via phase II gene expression. J. Ethnopharmacol. 146: 515-524. https://doi.org/10.1016/j.jep.2013.01.016
  13. Kitchen, K. 2013. Polyphenolic-rich Products Made with Georgia-grown Rabbiteye Blueberries, University of Georgia.
  14. Konic-Ristic, A., K. Savikin, G. Zdunic, T. Jankovic, Z. Juranic, N. Menkovic, and I. Stankovic. 2011. Biological activity and chemical composition of different berry juices. Food Chem. 125: 1412-1417. https://doi.org/10.1016/j.foodchem.2010.10.018
  15. Ku, C. S., and S. P. Mun. 2008. Antioxidant activities of ethanol extracts from seeds in fresh Bokbunja (Rubus coreanus Miq.) and wine processing waste. Bioresource Technol. 99: 4503-4509. https://doi.org/10.1016/j.biortech.2007.08.063
  16. Lee, J. and R. Wrolstad. 2004. Extraction of anthocyanins and polyphenolics from blueberry processing waste. J. Food Sci. 69: 564-573.
  17. Lee, S. J. 2013. Physico-chemical characteristics of black raspberry fruits (Bokbunja) and wines in korea. Korean J. Food Sci. Technol. 45: 451-459. https://doi.org/10.9721/KJFST.2013.45.4.451
  18. Li, C., J. Feng, W. Y. Huang, and X. T. An. 2013. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J. Arg. Food Chem. 61.3: 523-531. https://doi.org/10.1021/jf3046158
  19. Martineau, L. C., A. Couture, D. Spoor, A. Benhaddou-Andaloussi, C. Haris, B. Meddah, C. Leduc, A. Burt, T. Vuong, P. M. Le, M. Prentki, S. A. Bennett, J. T. Arnason, and P. S, Haddad. 2006. Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 13: 612-623. https://doi.org/10.1016/j.phymed.2006.08.005
  20. Moze, S., T. Polak, L. Gasperlin, D. Koron, A. Vanzo, N. Poklar Ulrih, and V. Abram. 2011. Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J. Arg. Food Chem. 59: 6998-7004. https://doi.org/10.1021/jf200765n
  21. Park, J. H., S. I. Hong, M. C. Jeong, and D. M. Kim. 2013. Quality characteristics and changes in mulberry (morus alba L.) depending on their maturity during distribution. Korea Food Res. Inst. 20: 304-316.
  22. Park, J. H., S. M. Oh, S. S. Lim, Y. S. Lee, H. K. Shin, Y. S. Oh, N. H. Choe, J, H. Y. Park, and J. K. Kim. 2006. Induction of heme oxygenase-1 mediates the anti-inflammatory effects of the ethanol extract of Rubus coreanus in murine macrophages. Biochem. Bioph. Res. Co. 351: 146-152. https://doi.org/10.1016/j.bbrc.2006.10.008
  23. Remberg, S. F., A.-B. Wold, K. Kvaal, M. Appelgren, and K. Haffner. 2006. An approach towards rapid optical measurements of antioxidant activity in blueberry cultivars. J. Appl. Bot. Food Qual. 80: 36-39.
  24. Samak, G., R. P. Shenoy, S. Manjunatha, and K. Vinayak. 2009. Superoxide and hydroxyl radical scavenging actions of botanical extracts of Wagatea spicata. Food Chem. 115: 631-634. https://doi.org/10.1016/j.foodchem.2008.12.078
  25. Seeram, N. P., L. S. Adams, Y. Zhang, R. Lee, D. Sand, H. S. Scheuller, and D. Heber. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agr. Food Chem. 54: 9329-9339. https://doi.org/10.1021/jf061750g
  26. Shin, T. Y., S. H. Kim, E. S. Lee, D. O. Eom, and H. M. Kim. 2002. Action of Rubus coreanus extract on systemic and local anaphylaxis. Phytotherapy Res. 16: 508-513. https://doi.org/10.1002/ptr.925
  27. Song, Y. J. 2004. A study to marketing strategies for the korean wild-berry wine industry. 4: 119-146.
  28. Sung, J. M. and H. Y. Choi. 2014. Effect of mulberry powder on antioxidant activities and quality characteristics of yogurt. J. Korean Soc. Food Sci. Nutr. 43: 690-697. https://doi.org/10.3746/jkfn.2014.43.5.690
  29. Threlfall, R. T., J. R. Morris, L. R. Howard, C. R. Brownmiller, and T. L. Walker. 2005. Pressing effects on yield, quality, and nutraceutical content of juice, seeds, and skins from Black Beauty and Sunbelt grapes. J. Food Sci. 70: S167-S171.
  30. Wang, S. Y., C.-T. Chen, and C. Y. Wang. 2009. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 112: 676-684. https://doi.org/10.1016/j.foodchem.2008.06.032