DOI QR코드

DOI QR Code

The Sensitivity Analyses of Initial Condition and Data Assimilation for a Fog Event using the Mesoscale Meteorological Model

중규모 기상 모델을 이용한 안개 사례의 초기장 및 자료동화 민감도 분석

  • Kang, Misun (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Lim, Yun-Kyu (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Cho, Changbum (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Kyu Rang (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Park, Jun Sang (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Baek-Jo (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
  • 강미선 (국립기상과학원 응용기상연구과) ;
  • 임윤규 (국립기상과학원 응용기상연구과) ;
  • 조창범 (국립기상과학원 응용기상연구과) ;
  • 김규랑 (국립기상과학원 응용기상연구과) ;
  • 박준상 (국립기상과학원 응용기상연구과) ;
  • 김백조 (국립기상과학원 응용기상연구과)
  • Received : 2015.06.20
  • Accepted : 2015.10.19
  • Published : 2015.10.30

Abstract

The accurate simulation of micro-scale weather phenomena such as fog using the mesoscale meteorological models is a very complex task. Especially, the uncertainty arisen from initial input data of the numerical models has a decisive effect on the accuracy of numerical models. The data assimilation is required to reduce the uncertainty of initial input data. In this study, the limitation of the mesoscale meteorological model was verified by WRF (Weather Research and Forecasting) model for a summer fog event around the Nakdong river in Korea. The sensitivity analyses of simulation accuracy from the numerical model were conducted using two different initial and boundary conditions: KLAPS (Korea Local Analysis and Prediction System) and LDAPS (Local Data Assimilation and Prediction System) data. In addition, the improvement of numerical model performance by FDDA (Four-Dimensional Data Assimilation) using the observational data from AWS (Automatic Weather System) was investigated. The result of sensitivity analysis showed that the accuracy of simulated air temperature, dew point temperature, and relative humidity with LDAPS data was higher than those of KLAPS, but the accuracy of the wind speed of LDAPS was lower than that of KLAPS. Significant difference was found in case of relative humidity where RMSE (Root Mean Square Error) for LDAPS and KLAPS was 15.7 and 35.6%, respectively. The RMSE for air temperature, wind speed, and relative humidity was improved by approximately $0.3^{\circ}C$, $0.2m\;s^{-1}$, and 2.2%, respectively after incorporating the FDDA.

중규모 기상 모델을 이용하여 안개와 같은 미세규모 국지현상을 정확히 재현하는 것은 매우 어려운 실정이다. 특히, 수치모델의 초기 입력 자료의 불확도는 수치모델의 예측 정확도에 결정적인 영향을 미치기 때문에 이를 보완하기 위한 자료동화 과정이 요구되어진다. 본 연구에서는 WRF (Weather Research and Forecasting) 모델을 이용하여 낙동강 지역에서 발생한 여름철 안개사례 재현실험을 대상으로 중규모 기상 모델의 한계를 검증하였다. 중규모 기상 모델에서 초기 및 경계장으로 사용되는 KLAPS (Korea Local Analysis and Prediction System)와 LDAPS (Local Data Assimilation and Prediction System) 분석장 자료를 이용하여 수치모델 모의 정확도 민감도 분석을 수행하였다. 또한 AWS (Automatic Weather System) 자료를 이용한 자료동화(Four-Dimensional Data Assimilation)에 의한 수치모델의 정확도 개선 정도를 평가하였다. 초기 및 경계장 민감도 분석 결과에서 LDAPS 자료를 입력 자료로 사용한 경우가 KLAPS 자료 보다 기온과 이슬점온도, 상대습도에서 높은 정확도를 보였고, 풍속은 더 낮은 수준을 나타내었다. 특히, 상대습도에서 LDAPS의 경우는 RMSE (Root Mean Square Error)가 15.9%, KLAPS는 35.6%의 수준을 보여 그 차이가 매우 크게 나타났다. 또한 자료동화를 통하여 기온, 풍속, 상대습도의 RMSE가 각각 $0.3^{\circ}C$, $0.2ms^{-1}$, 2.2% 수준으로 개선되었다.

Keywords

References

  1. Ahn, J.-B., Nam, J.-C., Seo, J.-W., and Lee, H.-J., 2002, Development of sea fog forecasting module and its application to Ulung-island sea fog events. Asia-Pacific Journal of Atmospheric Sciences, 38(2), 155-164. (in Korean)
  2. Byon, J.-Y., Choi, Y.-J., and Seo, B.-K., 2009, Numerical simulation of local circulation over the Daechung lake area by using the mesoscale model. Journal Korean Earth Science Society, 30(4), 464-477. (in Korean) https://doi.org/10.5467/JKESS.2009.30.4.464
  3. Catalano, F. and Moeng, C.-H., 2010, Large-eddy simulation of the daytime boundary layer in an idealized valley using the weather research and forecasting numerical model. Boundary-Layer Meteorology, 137(1), 49-75. https://doi.org/10.1007/s10546-010-9518-8
  4. Chen, F. and Dudhia, J., 2001, Coupling an advanced land surface/hydrology model with the penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  5. Choi, W., Lee, J. G., and Kim, Y.-J., 2012, Sensitivities of WRF Simulations to the resolution of analysis data and to application of 3DVAR: A case study. Atmosphere, 22(4), 387-400. https://doi.org/10.14191/Atmos.2012.22.4.387
  6. Chou, M.-D. and Suarez, M. J., 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo, 104606(3), 85pp.
  7. Hirschberg, P. A., Shafran, P. C., Elsberry, R. L., and Ritchie, E. A., 2001, An observing system experiment with the west coast picket fence. Monthly Weaher Review, 129(10), 2585-2599. https://doi.org/10.1175/1520-0493(2001)129<2585:AOSEWT>2.0.CO;2
  8. Hong, S.-G., 1982, Increase of the Fogs in Andong due to the Construction of Andong Reservoir. Asia-Pacific Journal of Atmospheric Sciences, 18(2), 26-32. (in Korean)
  9. Hong, S.-Y. and Pan, H.-L., 1996, Nonlocal boundary later vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124, 2322-2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  10. Jeon, B.-I., Kim, I.-G., and Lee, Y.-M., 2002, A change of local meteorological environment according to dam construction of Nakdong-river-1. Meteorological data analysis before and after dam construction. Journal of the Environmental Sciences, 11(3), 161-168. (in Korean) https://doi.org/10.5322/JES.2002.11.3.161
  11. Lee, C.-B., 1981, Changes of fog days and cloud amount by artificial lakes in Chuncheon. Asia-Pacific Journal of Atmospheric Sciences, 17(1), 18-26. (in Korean)
  12. Lee, C.B., Bong, J.-H., and Cho, H.-M., 1990, Aspects of local climatic change due to dam construction. Journal of Atmospheric Research, 7(1), 75-81. (in Korean)
  13. Lee, D.-G., Lee, M.-H., Lee, Y.-M., Yoo, C., Hong, S.-C., Jang, K.-W., and Hong, J.-H., 2013, An impact of meteorological initial field and data assimilation on CMAQ ozone prediction in the Seoul metropolitan area during June, 2007. Journal of Environmental Impact Assessment, 22(6), 609-626. (in Korean) https://doi.org/10.14249/eia.2013.22.6.609
  14. Lee, S.-H., Ryu, C.-S., and Kim, H.-S., 2004, Numerical study on surface data assimilation process for regional weather forecasting, Proceedings of fall meeting. Korean Earth Science Society, Seoul, Korea, 123-131. (in Korean)
  15. Lee, H.-W., Choi, H.-J., and Lee, K.-Y., 2005, The Effect of the Detailed Bottom Boundary Condition and Numerical Interpolation on the Simulation of the Air Flow Field with Complex Topography. Asia-Pacific Journal of Atmospheric Sciences, 41(1), 73-87. (in Korean)
  16. Lorenz, E.N., 1963, Deterministic nonperiodic flow. Journal of Atmospheric Science, 20(2), 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  17. Mllawer, E.J., Taubman, S. J., Brown, P. D., Iacono, M. J., and clough, S.A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated seerelated-k model for the longwave. Journal of Geophysical Research, 102 (D14), 16663-16682. https://doi.org/10.1029/97JD00237
  18. Moeng, C.-H., Dudhia, J., and Sullvian, P., 2007, Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Monthly Weather Review, 135, 2295-2311. https://doi.org/10.1175/MWR3406.1
  19. Nam, J.-C., Shin, M.-Y., and Yun, J.-I., 1995, Discrimination of fog events around artificial lakes in Andong based on hourly meteorological data. Asia-Pacific Journal of Atmospheric Sciences, 31(4), 393-398. (in Korean)
  20. Oke, T.R., 1987 Boundary Layer Climate. London and New York, Methuen, 240-241.
  21. Seo, B.-K., Byon, J.-Y., Lim, Y.-J., and Choi, B.-C., 2015, Evaluation of Surface Wind Forecast over the Gangwon Province using the Mesoscale WRF Model. Journal Korean Earth Science Society, 36(2), 158-170. (in Korean) https://doi.org/10.5467/JKESS.2015.36.2.158
  22. Shafran, P.C., Seaman, N.L., and Gayno, G. A., 2000, Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study. Journal of Applied Meteorology, 39(3), 412-426. https://doi.org/10.1175/1520-0450(2000)039<0412:EONPOB>2.0.CO;2
  23. Stauffer, D.R. and Seaman, N.L., 1990, Use of fourdimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic scale data. Monthly Weather Review, 118(6), 1250-1277. https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2
  24. Stauffer, D.R. and Seaman, N.L., 1994, On multi-scale four-dimensional data assimilation. Journal of Applied Meteorology, 33(3), 416-434. https://doi.org/10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
  25. Talbot, C., Bouzeld, E., and Smith, J., 2012, Nested mesoscale large-eddy simulation with WRF: performance in real test cases. Journal of Hydrometeorology, 13(5), 1421-1441. https://doi.org/10.1175/JHM-D-11-048.1
  26. Yun, J.-I., Hwang, K.-H., Chung, H.-H., Shin, M.-Y., Lim, J.-T., and Shin, J.-C., 1997, Effects of an Artificial lake on the local climate and the crop production in Suncheon area. Asia-Pacific Journal of Atmospheric Sciences, 33(3), 409-427. (in Korean)

Cited by

  1. Accuracy Assessment of Planetary Boundary Layer Height for the WRF Model Using Temporal High Resolution Radio-sonde Observations vol.26, pp.4, 2016, https://doi.org/10.14191/Atmos.2016.26.4.673