DOI QR코드

DOI QR Code

A Study on the Sterilization Effect of Ballast Water according to the Combination of Types of Treatment Apparatus

선박평형수 처리장치의 조합에 따른 살균효과에 관한 연구

  • Kang, Ah-Young (Division of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • Kim, Sang-Pil (Taegwang Heavy Industry) ;
  • Song, Ju-Yeong (Division of Civil, Environmental and Chemical Engineering, Changwon National University)
  • 강아영 (창원대학교 토목환경화공융합공학부) ;
  • 김상필 (태광중공업) ;
  • 송주영 (창원대학교 토목환경화공융합공학부)
  • Received : 2015.07.25
  • Accepted : 2015.09.02
  • Published : 2015.09.30

Abstract

The purpose of this study is to treat the ballast water by shear stress without an environmental pollution and to find out the optimal treatment conditions. The ballast water problem is issued up as the trade activated and the cargos mobilized. To improve this problem, International Marine Organization(IMO) make the rule about the ballast water treatment with specific restrictions. Although many countries have been studying about the ballast water treatment technology, there is almost no technology that can treat the microorganisms under $50{\mu}m$ without any secondary pollution. In this study, we tried to treat ballast water by applying shear stress as the physical treatment for the sterilization and tried to find out the optimal conditions including the 100% sterilizing rate and the best economic condition.

2차 오염이 없는 물리적 선박 평형수 처리 장치의 조합별 비교를 통하여 비교적 우수한 조합을 밝혀내는 것이 본 연구의 목적이다. 2008년 IMO에서는 선박 평형수 문제를 제제하기 위해 배출 선박 평형수 내 미생물의 농도를 일정 농도로 규제하게 되었다. IMO 규제 농도를 맞추기 위한 멸균 방법으로는 약품을 이용한 화학적 처리, 전기분해를 통한 차아염소산 처리, UV나 오존 및 플라즈마를 이용하는 방법, membrane을 이용하는 방법 등이 있다. 하지만 어느 방법이나 부분적으로 2차오염이나 선체부식 및 살균효율 등의 단점을 가지고 있는 실정이다. 아울러 이런 단점들을 피해가면서 조류와 미생물을 효율적으로 멸균 시킬 수 있는 방법은 현재까지 미비한 실정이다. 본 연구에서 적용된 처리장치는 전단응력을 이용하여 2차 오염을 발생시키지 않으면서 조류와 미생물을 살균시킬 수 있는 물리적 살균처리장치이다. 본 연구에서는 이 장치의 다양한 type별 조합으로 실험하여 살균 가능한 최저 회전속도에 따른 최고 유량 등을 규명하여 상업적 처리 장치의 설계를 위한 기초자료로 삼고자하였다.

Keywords

References

  1. R. R. Hermann, J. Kohler and A. E. Scheepens, Innovation in product and services in the shipping retrofit industry: a case study of ballast water treatment systems, Journal of Cleaner Production in press, 1 (2014).
  2. Y. Jung, Y. Yoon, E. Hong, M. Kwon, and J. W. Kang, Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe, Marine Pollution Bulletin 72(1), 71 (2013). https://doi.org/10.1016/j.marpolbul.2013.04.028
  3. N. Zhang, K. Hum B. Shan, Ballast water treatment using UV/TiO2 advanced oxidation processes: An approach to invasice species prevention, Chemical Engineering Journal 243, 7 (2014). https://doi.org/10.1016/j.cej.2013.12.082
  4. J. M. Seiden, R. B. Rivkin, Biological controls on bacterial population in ballast water during ocean transit, Marine Pollution Bulletin 78(1-2), 7 (2014). https://doi.org/10.1016/j.marpolbul.2013.09.003
  5. D. A. Wright, R. W. Gensemer and C. L. Mitchelomore, W. A. Stubblefield, Eric van Genderen, R. Dawson, C. E. O. Dawson, J. S. Bearr, Richard A. Mueller, and William J. Cooper, Shipboard trials of an ozone-based ballast water treatment system, Marine Pollution Bulletin 60(9), 1571 (2010). https://doi.org/10.1016/j.marpolbul.2010.04.010
  6. S. Banerji, B. Werschkun, and T. Hofer, Assessing the risk of ballast water treatment to human health, Regulatory Toxicology and Pharmacology 62(3), 513 (2012). https://doi.org/10.1016/j.yrtph.2011.11.002
  7. L. Maranda, A. M. Cox, R. G. Campbell, and D. C. Smith, Chlorine dioxide as a treatment for ballast water to control invasive species: Shipboard testing, Marine Pollution Bulletin 75(1-2), 76 (2013). https://doi.org/10.1016/j.marpolbul.2013.08.002
  8. IMO, international covention for the control and management of ship's. ballast Water and Sediments, on 25/09/06 accessed from website (2004).
  9. International Maritime Organization (IMO), Global ballast water management programme, on 15/01/08 accessed from http://globallast.imo.org (2008).
  10. Z. Tang, M. A. Butkus, and Y. F. Xie, Enhanced performance of crumb rubber filtration for ballast water treatment, Chemosphere 74(10), 1396 (2009). https://doi.org/10.1016/j.chemosphere.2008.11.048
  11. M. David, S. Gollasch, and E. Leppakoski, Risk assessment for exemptions from ballast water management - The Baltic Sea case study, Marine Pollution Bulletin 75(1-2), 205 (2013). https://doi.org/10.1016/j.marpolbul.2013.07.031
  12. S. Delacroix, C. Vogelsang, A. Tobiesen, and H. Liltved, Disinfection by-products and ecotoxicity of ballast water after oxidative treatment - Results and experiences from seven years of full-scale testing of ballast water management systems, Marine Pollution Bulletin 73(1), 24 (2013). https://doi.org/10.1016/j.marpolbul.2013.06.014
  13. N. Zhang, B. Ma, J. Li, and Z.Zhang, Factors affecting formation of chemical by-products during ballast water treatment based on an advanced oxidation process, Chemical Engineering Journal 231, 427 (2013). https://doi.org/10.1016/j.cej.2013.07.055
  14. N. Zhang, Y. Zhang, M. Bai, Z. Zhang, and C. Chen, Risk assessment of marine environments from ballast water discharges with laboratory scale hydroxyl radicals treatment in Tianjin Harborm China, Journal of Environmental Management 145, 122 (2014). https://doi.org/10.1016/j.jenvman.2014.06.022
  15. Y. de Lafontaine and S. P. Despatie, Performance of a biological deoxygenation process for ships' ballast water treatment under very cold water conditions, Science of the Total Environment 472, 1036 (2014). https://doi.org/10.1016/j.scitotenv.2013.11.116
  16. D. Feng, J. Shi, and D. Sun, Inactivation of microalgae in ballast water with pulse intense light treatment, Marine Pollution Bulletin 90(1-2), 299 (2015). https://doi.org/10.1016/j.marpolbul.2014.09.006
  17. A. C. Akram, S. Noman, R. M. Javid, J. P. Gizicki, E. A. Reed, S. B. Singh, A. S. Basu, F. Banno, M. Fujimoto, and J. L. Ram, Development of an automated ballast water treatment verification system utilizing fluorescein diacetate hydrolysis as a measure of treatment efficacy, Water Research 70, 404 (2015). https://doi.org/10.1016/j.watres.2014.12.009
  18. M. B. Shon, M. H. Son, J. Lee, Y. J. Son, G. H. Lee, C. H. Moon, and Y. S. Kim, The Study on the Marine Eco-toxicity and Ecological Risk of Treated Discharge Water from Ballast Water Management System Using Electrolysis, Journal of the Korean Society for Marine Environment and Energy 16(2), 88 (2013). https://doi.org/10.7846/JKOSMEE.2013.16.2.88
  19. Ministry of Oceans and Fisheries, http://www.mof.go.kr.
  20. National Fusion Research Institute, http://www.nfri.re.kr.
  21. Korea Evaluation Institute Of Industrial Technology All Rights Reserved, http://keit.re.kr.
  22. Feng Qing, Xiao Qian-Lu, Velocity and shear stress profiles for tidal effected channels, Ocean Engineering 101, 172 (2015). https://doi.org/10.1016/j.oceaneng.2015.04.013

Cited by

  1. 선박평형수 처리장치의 Scale-up을 위한 조건 최적화 연구 vol.54, pp.5, 2015, https://doi.org/10.9713/kcer.2016.54.5.630