DOI QR코드

DOI QR Code

Influence of Zeta Potential on Fractional Precipitation of (+)-Dihydromyricetin

(+)-Dihydromyricetin 분별침전에 미치는 제타전위의 영향

  • Ha, Geon-Soo (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 하건수 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2015.02.02
  • Accepted : 2015.03.27
  • Published : 2015.12.01

Abstract

This study evaluated the influence of the zeta potential of silica-alumina on the behavior in terms of purity, yield, and precipitate shape and size of fractional precipitation in the fractional precipitation process for the purification of (+)-dihydromyricetin. The optimal silica-alumina amount (surface area per working volume of reacting solution) for zeta potential control was $100mm^{-1}$. As the zeta potential value of silica-alumina increased, (+)-dihydromyricetin yield and precipitate size were increased. The use of silica with the highest value of the zeta potential (+4.99 mV) as a zeta potential-controlling material increased the (+)-dihydromyricetin yield by 2-fold compared with that of the use of alumina with the lowest value of the zeta potential (-19.00 mV). In addition, the (+)-dihydromyricetin yield and precipitate size was inversely correlated with the absolute value of the zeta potential. On the other hand, the purity of (+)-dihydromyricetin had almost no effect on changes in the zeta potential of silica-alumina.

본 연구에서는 바이오매스 유래 생리활성물질인 (+)-dihydromyricetin을 정제하기 위한 분별침전공정에서 분별침전용액의 제타전위가 분별침전 양상(순도, 수율, 침전물 형태와 크기)에 미치는 영향을 조사하였다. 제타전위 조절을 위한 실리카-알루미나의 첨가량(반응액 부피당 표면적) $100mm^{-1}$에서 가장 높은 수율을 얻을 수 있었다. 실리카-알루미나의 제타전위가 양(+)의 값으로 증가할수록 (+)-dihydromyricetin 수율과 침전물의 크기는 증가하였다. 가장 큰 제타전위 값(+4.99 mV)을 가진 실리카를 이용한 분별침전의 경우에는 가장 작은 제타전위 값(-19.00 mV)을 가진 알루미나를 이용한 분별침전의 경우보다 2배 이상 높은 수율을 얻을 수 있었다. 또한 분별침전 과정에서 제타전위 절대값이 증가할수록 (+)-dihydromyricetin 수율과 침전물의 크기는 감소하여 제타전위 절대값에 반비례함을 알 수 있었다. 반면 표면적증가물질 실리카-알루미나의 제타전위 변화에도 (+)-dihydromyricetin 순도는 거의 변화가 없었다.

Keywords

References

  1. An, S. W., Kim, Y. G., Kim, M. H., Lee, B. I., Lee, S. H., Kwon, H. I., Hwang, B. and Lee, H. Y., "Comparison of Hepatic Detoxification Activity and Reducing Serum Alcohol Concentration of Hovenia dulsis Thunb and Alnus Japonica Steud," Korean J. Medicinal. Crop. Sci., 7, 263-268(1999).
  2. Hase, K. and Basnet, P., "Effect of Hovenia dulcis on Lipopolysaccharide-induced Liver Injury in Chronic Alcohol-fed Rats," J. Trad. Med., 14, 28-33(1997).
  3. Lee, M. K., Kim, Y. G., An, S. W., Kim, M. H., Lee, J. H., Lee, H. Y., "Biological Activities of Hovenia dulcis Thunb," Korean J. Medicinal. Crop. Sci., 7, 185-192(1999).
  4. Sakai, K., Yamane, T., Saitoh, Y., Ikawa, C., Nishihata, T., "Effect of Water Extracts of Crude Drugs in Decreasing Blood Alcohol Concentrations in Rats," Chem. Pharm. Bull., 35, 4597-4604(1987). https://doi.org/10.1248/cpb.35.4597
  5. Yoo, S. M., Mun, S. and Kim, J. H., "Recovery and Pre-purification of (+)-Dihydromyricetin from Hovenia dulcis," Process Biochem., 41, 567-570(2006). https://doi.org/10.1016/j.procbio.2005.10.008
  6. Du, Q., Cai, W., Xia, M. and Ito, Y., "Purification of (+)-Dihydromyricetin from Leaves Extract of Ampelopsis Grossedentata using High-Speed Countercurrent Chromatograph with Scale-up Triple Columns," J. Chromatogr. A., 973, 217-220(2002). https://doi.org/10.1016/S0021-9673(02)01092-0
  7. Yohsikawa, M., Murakami, T., Ueda, T., Yoshizumi, S., Ninomiya, K., Murakami, N., et al. "Bioactive Constituents of Chinese Natural Medicines. III. Absolute Stereostructures of New Dihydroflavonols, Hovenitins I, II, and III, Isolated from Hoveniae Semen Seu Fructus, the Seed and Fruit of Hovenia dulcis Thunb. (Rhamnaceae): Inhibitory Effect on Alcohol-Induced Muscular Relaxation and Hepatoprotective Activity," Yakugaku Zasshi., 117, 108-118 (1997). https://doi.org/10.1248/yakushi1947.117.2_108
  8. Song, X. and Ren, Q., "Preparation and Application of Dihydromyricetin," CN. Patent No. 1,288,892(2001).
  9. Zhang, Y., "Process for Preparing Dihydromyricetin from Porcelain Ampelopsis," CN. Patent No. 1,393,443(2003).
  10. Lee, K. H. and Kim, J. H., "Development and Optimization of Fractional Precipitation for the Pre-purification of (+)-Dihydromyricetin," Biotechnol. Bioproc. Eng., 13, 274-278(2008). https://doi.org/10.1007/s12257-007-0199-1
  11. Lim, M. K. and Kim, J. H., "Improvement of the Fractional Precipitation Process for the Purification of (+)-Dihydromyricetin," Korean J. Biotechnol. Bioeng., 42, 25-31(2014).
  12. Han, M. G. and Kim, J. H., "Evaluation of a High Surface Area Fractional Precipitation Process for the Purification of Paclitaxel from Taxus chinensis," Biotechnol. Bioproc. Eng., 17, 1018-1024 (2012). https://doi.org/10.1007/s12257-012-0056-8
  13. Ryu, H. K. and Kim, J. H., "Effect of Zeta Potential on Fractional Precipitation for the Purification of Paclitaxel from Plant Cell Cultures of Taxus chinensis," Korean J. Biotechnol. Bioeng., 42, 114-120(2014).
  14. Jeon, Y. L. and Kim, J. H., "Precipitation Characteristics of Paclitaxel in Solvent Systems with Different Ion Exchange Resins," Korean J. Chem. Eng., 30, 1954-1959(2013). https://doi.org/10.1007/s11814-013-0136-2
  15. Gregg, S. J. and Sing, K. S. W., "Adsorption, Surface Area and Porosity," 2nd ed. Academic Press. New York., pp. 41-110(1982).
  16. Cho, E. B., Cho, W. K., Cha, K. H. and Park, J. S., "Enhanced Dissolution of Megestrol Acetate Microcrystals Prepared by Antisolvent Precipitation Process Using Hydrophilic Additives," Int J. Pharm., 396, 91-98(2010). https://doi.org/10.1016/j.ijpharm.2010.06.016

Cited by

  1. 분별침전에서 친수성 고분자 물질을 이용한 (+)-dihydromyricetin의 입자크기 감소 vol.56, pp.3, 2015, https://doi.org/10.9713/kcer.2018.56.3.370