DOI QR코드

DOI QR Code

Industrial wastewater treatment by using of membrane

  • Razavi, Seyed Mohammad Reza (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Miri, Taghi (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Barati, Abolfazl (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Nazemian, Mahboobeh (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Sepasi, Mohammad (Department of Chemical Engineering, Faculty of Engineering, Arak University)
  • Received : 2015.07.01
  • Accepted : 2015.10.29
  • Published : 2015.11.25

Abstract

In this work, treatment of real hypersaline refinery wastewater by hollow fiber membrane bioreactor coupled with reverse osmosis unit was studied. The ability of HF-MBR and RO developed in this work, was evaluated through examination of the effluent properties under various operating conditions including hydraulic retention time and flux. Arak refinery wastewater was employed as influent of the bioreactor which consists of an immersed ultrafiltation membrane. The HF-MBR/RO was run for 6 months. Average elimination performance of chemical oxygen demand, biological oxygen demand, total suspended solids, volatile suspended solids, total dissolved soild and turbidity were obtained 82%, 89%, 98%, 99%, 99% and 98% respectively. Highly removal performance of oily contaminant, TDS and the complete retention of suspends solids implies good potential of the HF-MBR/RO system for wastewater refinement.

Keywords

References

  1. Andrzej, B.K. and Field, R.W. (1996), "Process factors during removal of oil-in-water emulsions with cross-flow microfiltration", Desalination, 105(1-2), 79-89. https://doi.org/10.1016/0011-9164(96)00061-6
  2. APHA (2005), Standard Methods for the Examination of Water and Wastewater, (21st Ed.), Washington, D.C., USA.
  3. Campos, J.C., Borges, R.M.H., Oliveira Filho, A.M., Nobrega, R. and Sant'anna, Jr. G.L. (2002), "Oilfield wastewater treatment by combined microfiltration and biological processes", Water Res., 36(1), 95-104. https://doi.org/10.1016/S0043-1354(01)00203-2
  4. Chiemchaisri, C. and Yamamoto, K. (1994), "Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment", J. Membr. Sci., 87(1-2), 119-129. https://doi.org/10.1016/0376-7388(93)E0090-Z
  5. Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N. and Kroiss, H. (2005), "Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants", Water Res., 39(19), 4797-4807. DOI: http://dx.doi.org/10.1016/j.watres.2005.09.015
  6. del Pino, M.P. and Durham, B. (1999), "Wastewater reuse through dual-membrane processes: Opportunities for sustainable water resources", Desalination, 124(1-3), 271-277. https://doi.org/10.1016/S0011-9164(99)00112-5
  7. Fakhru'l-Razi, A., Pendashteh, A.R., Luqman Chuah, A., Dayang Radiah, A.B.,Madaeni, S.S. and Zurina, Z.A. (2009), "Review of technologies for oil and gas produced water treatment", J. Hazard. Mater., 170(2-3), 530-551. https://doi.org/10.1016/j.jhazmat.2009.05.044
  8. Fakhru'l-Razi, A., Pendashteh, A., Abidin, Z.Z., Abdullah, L.C., Biak, D.R.A. and Madaeni, S.S. (2010), "Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use", Bioresource Technol., 101(18), 6942-6949. https://doi.org/10.1016/j.biortech.2010.04.005
  9. Fazeli, S., Fatehizadeh, A., Hassani, A.H., Torabian, A. and Amin, M.M. (2012), "Evaluation of sheet membrane bioreactor efficiency for municipal wastewater treatment", Int. J. Environ. Health Eng., 1(19), 1-5. https://doi.org/10.4103/2277-9183.94385
  10. Fazaeli, R., Razavi, S.M.R., Najafabadi, M.S., Torkamand, R. and Hemmati, A. (2015), "Computational simulation of CO2 removal from gas mixtures by chemical absorbents in porous membranes", RSC Adv., 5, 36787-36797. DOI: 10.1039/C5RA02001H
  11. Ghadiri, M., Ghasemi Darehnaei, M., Sabbaghian, S. and Shirazian, S. (2013), "Computational simulation for transport of priority organic pollutants through nanoporous membranes", Chem. Eng. Technol., 36(3), 507-512. https://doi.org/10.1002/ceat.201200513
  12. Grelot, A., Tazi-Pain, A., Weinrich, L., Lesjean, B. and Grasmick, A. (2009), "Evaluation of a novel flat sheet MBR filtration system", Desalination, 236(1-3), 111-119. https://doi.org/10.1016/j.desal.2007.10.057
  13. Gryta, M., Tomaszewska, M. and Karakulski, K. (2006), "Wastewater treatment by membrane distillation", Desalination, 198(1-3), 67-73. DOI: http://dx.doi.org/10.1016/j.desal.2006.09.010
  14. Kang, I.J., Lee, C.H. and Kim, K.J. (2003), "Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system", Water Res., 37(5), 1192-1197. https://doi.org/10.1016/S0043-1354(02)00534-1
  15. Kertesz, S. (2014), "Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration", Membr. Water Treat., Int. J., 5(2), 73-86. https://doi.org/10.12989/mwt.2014.5.2.073
  16. Kong, J. and Li, K. (1999), "Oil removal from oil-in-water emulsions using PVDF membranes", J. Sep. Purif. Technol., 16(1), 83-93. https://doi.org/10.1016/S1383-5866(98)00114-2
  17. Lau, W. and Ismail, A.F. (2009), "Polymeric nano filtration membranes for textile dye wastewater treatment:Preparation, performance evaluation, transport modeling, and fouling control - A review", Desalination, 245(1-3), 321-348. https://doi.org/10.1016/j.desal.2007.12.058
  18. Le-Clech, P., Chen, V. and Fane, T. (2006), "Fouling in membrane bioreactors used in wastewater treatment", J. Membrane Sci., 284(1-2), 17-53. https://doi.org/10.1016/j.memsci.2006.08.019
  19. Lee, S., Aurelle, Y. and Roques, H. (1994), "Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil", J. Membr. Sci., 91(1), 231. https://doi.org/10.1016/0376-7388(94)80085-5
  20. Melin, T., Jefferson, B., Bixio, D., Thoeye, C., De Wilde, W., De Koning, J., van der Graaf, J. and Wintgens, T. (2006), "Membrane bioreactor technology for wastewater treatment and reuse", Desalination, 187(1-3), 271-282. DOI: http://dx.doi.org/10.1016/j.desal.2005.04.086
  21. Miramini, S.A., Razavi, S.M.R., Ghadiri, M., Mahdavi, S.Z. and Moradi, S. (2013), "CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor", Chem. Eng. Process.: Process Intensif., 72, 130-136. DOI: http://dx.doi.org/10.1016/j.cep.2013.07.005
  22. Neff, J.M. (2002), Bioaccumulation in Marine Organisms: Effects of Contaminants from Oil Well Produced Water, Elsevier Science Publishers, Amsterdam, Netherlands.
  23. Pendashteh, A., Fakhru'l-Razi, A., Madaeni, S., Abdullah, L., Abidin, Z. and Awang Biak, D. (2012), "Evaluation of membrane bioreactor for hypersaline oily wastewater treatment", Process. Saf. Environ., 90(1), 45-55. https://doi.org/10.1016/j.psep.2011.07.006
  24. Racz, G., Kerker, S., Schmitz, O., Schnabel, B., Kovacs, Z., Vatai, G., Ebrahimi, M. and Czermak, P. (2015), "Experimental determination of liquid entry pressure (LEP) in vacuum membrane distillation for oily wastewaters", Membr. Water Treat., Int. J., 6(3), 237-249. https://doi.org/10.12989/mwt.2015.6.3.237
  25. Razavi, S.M.R., Razavi, S.M.J., Miri, T. and Shirazian, S. (2013), "CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2- methyl-1-propanol and piperazine", Int. J. Greenh. Gas Con., 15, 142-149. DOI: http://dx.doi.org/10.1016/j.ijggc.2013.02.011
  26. Razavi, S.M.R., Shirazian, S. and Najafabadi, M.S. (2015a), "Investigations on the ability of di-isopropanol amine solution for removal of CO2 from natural gas in porous polymeric membranes", Polym. Eng. Sci., 55(3), 598-603. DOI: 10.1002/pen.23924
  27. Razavi, S.M.R., Shirazian, S. and Nazemian, M. (2015b), "Numerical simulation of CO2 separation from gas mixtures in membrane modules: Effect of chemical absorbent", Arab. J. Chem. [In Press] DOI: http://dx.doi.org/10.1016/j.arabjc.2015.06.006
  28. Reith, C. and Birkenhead, B. (1998), "Membranes enabling the affordable and cost effective reuse of waste water as an alternative water source", Desalination, 117(1-3), 203-209. https://doi.org/10.1016/S0011-9164(98)00097-6
  29. Rezakazemi, M., Ghafarinazari, A., Shirazian, S. and Khoshsima, A. (2013), "Numerical modeling and optimization of wastewater treatment using porous polymeric membranes", Polym. Eng. Sci., 53(6), 1272-1278. https://doi.org/10.1002/pen.23375
  30. Saha, P., Hossain, Md. Z., Mozumder, Md. S.I., Uddin, Md. T., Islam, Md. A., Hoinkis, J. Deowan, S.A., Drioli, E. and Figoli, A. (2014), "MBR technology for textile wastewater treatment: First experience in Bangladesh", Membr. Water Treat., Int. J., 5(3), 197-205. https://doi.org/10.12989/mwt.2014.5.3.197
  31. Scholz, W. and Fuchs, W. (2000), "Treatment of oil contaminated wastewater in a membrane bioreactor", J. Water Res., 34(14), 3621-3629. https://doi.org/10.1016/S0043-1354(00)00106-8
  32. Shariati, F., Mehrnia, M., Sarrafzadeh, M.H., Rezaee, S., Grasmick, A. and Heran, M. (2013), "Fouling in a novel airlift oxidation ditch membrane bioreactor (AOXMBR) at different high organic loading rate", Sep. Purif. Technol., 105, 69-78. https://doi.org/10.1016/j.seppur.2012.12.008
  33. Shim, J.K., Yoo, I.K. and Lee, Y.M. (2002), "Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor", Process Biochem., 38(2), 279-285. https://doi.org/10.1016/S0032-9592(02)00077-8
  34. Tahvildari, K., Razavi, S.M.R., Tavakoli, H., Mashayekhi, A. and Golmohammadzadeh, R. (2015), "Modeling and simulation of membrane separation process using computational fluid dynamics", Arab. J. Chem. [In Press] DOI: http://dx.doi.org/10.1016/j.arabjc.2015.02.022
  35. Tam, L.S., Tang, T.W., Lau, G.N., Sharma, K.R. and Chen, G.H. (2007), "A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems", Desalination, 202(1-3), 106-113. https://doi.org/10.1016/j.desal.2005.12.045
  36. Tellez, G.T., Nirmalakhandan, N. and Gardea-Torresdey, J. (2002), "Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water", Adv. Environ. Res., 6(4), 455-470. https://doi.org/10.1016/S1093-0191(01)00073-9
  37. Venkata Mohan, S., Chandrashekara Rao, N., Krishna Prasad, K., Mad-havi, B.T.V. and Sharma, P.N. (2005), "Treatment of complex chemical wastewater in a sequencing batch reactor (SBR) with an aerobic suspended growth configuration", Process Biochem., 40(5), 1501-1508. https://doi.org/10.1016/j.procbio.2003.02.001
  38. Wang, S., Wen, J., Wang, H., Song, Y. and Wang, L. (1998), "Application of the polypropylene hollow fiber microfiltration membrane for treatment of the oil-contained waste water in oil field", J. Membr. Sci., 18(2), 28-32.
  39. Yuliwati, E. and Ismail, A.F. (2011), "Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment", Desalination, 273(1), 226-234. https://doi.org/10.1016/j.desal.2010.11.023
  40. Zhao, X., Wang, Y., Ye, Z., Borthwick, A. and Ni , J. (2006), "Oil field wastewater treatment in biological aerated filter by immobilized microorganisms", Process Biochem., 41(7), 1475-1483. https://doi.org/10.1016/j.procbio.2006.02.006

Cited by

  1. Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation vol.7, pp.5, 2016, https://doi.org/10.12989/mwt.2016.7.5.463
  2. Mathematical Modeling and Simulation of Nitrate Separation from Contaminated Water in a Membrane Contactor 2016, https://doi.org/10.1007/s40995-016-0058-z
  3. The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO 2 purging versus three different antiscalants vol.546, 2018, https://doi.org/10.1016/j.memsci.2017.09.087
  4. A thermothickening polymer as a novel flocculant for oily wastewater treatment pp.1520-5754, 2020, https://doi.org/10.1080/01496395.2018.1563161
  5. Carbonate scale reduction in reverse osmosis membrane by CO2 in wastewater reclamation vol.8, pp.2, 2015, https://doi.org/10.12989/mwt.2017.8.2.125
  6. Application of nanofiltration membrane for the River Nile water treatment in Egypt: Case study vol.9, pp.4, 2015, https://doi.org/10.12989/mwt.2018.9.4.233
  7. Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process vol.9, pp.4, 2018, https://doi.org/10.12989/mwt.2018.9.4.285