DOI QR코드

DOI QR Code

Latching Control Technology for Improvement of Extracted Power from Wave Energy Converter

파력발전기 추출파워 향상을 위한 래칭 제어기법

  • Cho, Il Hyoung (Department of Ocean System Engineering, Jeju National University)
  • 조일형 (제주대학교 해양시스템공학과)
  • Received : 2015.08.27
  • Accepted : 2015.10.21
  • Published : 2015.11.25

Abstract

In this study, a latching control technology, proposed by Sheng et al.(2015), was applied in order to maximize the extraction efficiency of WEC (Wave Energy Converter), which is the heaving buoy coupled with linear electric generator. The latching control is the phase-control technique for improving the wave energy conversion with appropriate latching duration of keeping the buoy fixed. From the time-domain analysis in regular waves, the latching control technology can significantly improve the heave velocity and extracted power, even though the resonance condition is not satisfied. By using the latching control technology, the draft of buoy as well as the required PTO damping force can be significantly reduced along with increased extracted power, which is a big advantage in manufacturing the WEC.

부이의 수직운동으로부터 파랑에너지를 추출하는 파력발전기의 추출효율을 극대화하기 위하여 Sheng et al.(2015)이 제안한 래칭 제어기법을 적용하였다. 래칭 제어기법은 부이를 구속하는 래칭 시간을 조절하여 추출효율을 높이는 위상제어 방법이다. 래칭 제어기법을 규칙파중 수직운동하는 부이에 적용한 결과, 공진조건을 만족하지 않았음에도 불구하고 부이의 운동속도와 추출파워는 크게 증가하였다. 부이의 수직운동으로부터 파랑에너지를 흡수하는 파력발전기에 이러한 래칭 제어기법을 도입하면 추출파워의 증가와 더불어 부이의 흘수와 PTO감쇠력을 줄일 수 있어 제작비용을 크게 낮출 수 있다.

Keywords

References

  1. Babarit, A. and Clement, A.H., 2006, "Optimal Latching Control of a Wave Energy Device in Regular and Irregular waves", Appl. Ocean Res., Vol.28, 77-91. https://doi.org/10.1016/j.apor.2006.05.002
  2. Budal, K. and Falnes, J., 1975, "A Resonant Point Absorber of Ocean Wave Power", Nature, Vol.256, 478-479. https://doi.org/10.1038/256478a0
  3. Cho, I.H. and Kweon, H.M., 2011, "Extraction of Wave Energy Using the Coupled Heaving Motion of a Circular Cylinder and Linear Electric Generator", J. Ocean Engineering and Technology, Vol.25, No.6, 9-16. https://doi.org/10.5574/KSOE.2011.25.6.009
  4. Cho, I.H. and Choi, J.Y., 2014, "Design of Wave Energy Extractor with a Linear Electric Generator Part II. Linear Generator", J. Korean Soc. Mar. Environ. Energy, Vol.17, No.3, 174-181. https://doi.org/10.7846/JKOSMEE.2014.17.3.174
  5. Cummins, W., 1962, "The Impulse Response Function and Ship Motions", Schiffstechnik, Vol.9, 101-109.
  6. Falcao, A., 2008, "Phase Control through Load Control of Oscillating- body Wave Energy Converters with Hydraulic PTO System", Ocean Engineering, Vol.35, 358-366. https://doi.org/10.1016/j.oceaneng.2007.10.005
  7. French, M.J., 1979, "A Generalized View of Resonant Energy Transfer", J. Mech. Engng. Science, Vol.21, 299-300. https://doi.org/10.1243/JMES_JOUR_1979_021_047_02
  8. Falnes, J. and Budal, K., 1978, "Wave-power Conversion by Power Absorbers", Norwegian Maritime Research, Vol.6, 2-11.
  9. Hals, J., Falnes, J. and Moan, T., 2011, "A Comparison of Selected Strategies for Adaptive Control of Wave Energy Converters", J. Offshore Mech. Arct. Eng., Vol.133, 1-12.
  10. Kim, J.R., Bae, Y.H. and Cho, I.H., 2014, "Design of Wave Energy Extractor with a Linear Electric Generator Part I. Design of a Wave Power Buoy", J. Korean Soc. Mar. Environ. Energy, Vol.17, No.2, 146-152. https://doi.org/10.7846/JKOSMEE.2014.17.2.146
  11. Newmark, N.M., 1959, "A Method of Computation for Structural Dynamics", Proceedings of the American Society of Civil Engineers, 67-94.
  12. Sheng, W., Alcorn, R. and Lewis, A., 2015, "On Improving Wave Energy Conversion, part I: Optimal and Control Technologies", Renewable Energy, Vol.75, 922-934. https://doi.org/10.1016/j.renene.2014.09.048

Cited by

  1. Vector Control for Wave Power Generation System using Permanent Magnet Linear Synchronous Generator vol.19, pp.2, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.2.120