DOI QR코드

DOI QR Code

Spatial Coherence Analysis of Underwater Ambient Noise Measured at the Yellow Sea

서해에서 측정된 수중 주변 소음의 공간 코히런스 분석

  • 권혁종 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 김정훈 (STX 엔진 주식회사) ;
  • 최지웅 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 강돈혁 (한국해양과학기술원) ;
  • 조성호 (한국해양과학기술원) ;
  • 정섬규 (한국해양과학기술원) ;
  • 박경주 (해군사관학교)
  • Received : 2015.04.23
  • Accepted : 2015.08.10
  • Published : 2015.11.30

Abstract

Coherence describing the similarity between physical quantities of two signals is a very useful tool to investigate the temporal and spatial characteristics of signals propagating in underwater acoustic waveguide. Ambient noise measurements were made by the vertical received array consisting of three hydrophones as part of the KIOST-HYU joint acoustics experiment, and the coherence for the underwater ambient noise was analyzed. In this paper, the coherence results in cases that the generator in the research vessel was off and turned on are presented. The coherence estimated in the case of the generator operation mode are compared to the predictions obtained using the theoretical model with the directional density function dominated by vertical components propagating downward from the ship. In the case of the generator switch-off, the results are compared to the model predictions with directional density function including the effects of sea surface noise and long-distance shipping noise.

코히런스 분석은 두 수신신호의 유사성을 분석하는 방법으로, 수중음향에서는 음파의 시간 및 공간 특성을 나타낼 수 있는 유용한 분석 방법이다. 본 논문에서는 한국해양과학기술원과 한양대학교가 공동으로 수행한 해양음향 실험의 일부로, 3개의 수중청음기로 구성된 수직선배열센서를 이용하여 수중에서 주변 소음을 측정하였다. 조사선 발전기가 작동할 때와 정지했을 때, 총 두 가지 경우에 대하여 주변 소음이 측정되었고 각각에 대한 코히런스 분석을 수행하였다. 조사선 발전기가 작동하는 경우의 코히런스 결과는 조사선 발전기 소음의 전달 손실을 고려하여 계산된 방향 밀도함수를 이용한 코히런스 결과와 비교되며, 조사선 발전기가 정지한 경우인 주변 소음의 코히런스 결과는 해수면 소음원, 해저면 구성성분 및 원거리 선박 소음이 반영된 코히런스 모델 결과와 비교, 분석되어진다.

Keywords

References

  1. S. Cho, D. Kang, C. -K. Lee, S. -K. Jung, J. W. Choi, and S. Oh, "Overview of Results from the KIOST-HYU Joint Experiment for studying on Acoustic Propagation in Shallow Geological Environment" (in Korean), J. Acoust. Soc. Kr. 34, 411-422 (2015). https://doi.org/10.7776/ASK.2015.34.6.411
  2. X. Lurton, An introduction to underwater acoustics 2nd ed. (Springer, Heidelberg, 2002).
  3. M. J. Buckingham, "Theory of the directionality and spatial coherence of wind-driven ambient noise in a deep ocean with attenuation," J. Acoust. Soc. Am. 134, 950-958 (2013). https://doi.org/10.1121/1.4812270
  4. P. H. Dahl, W. J. Plant, and D. R. Dall'Osto, "Vertical coherence and forward scattering from the sea surface and the relation to the directional wave spectrum," J. Acoust. Soc. Am. 134, 1843-1853 (2013). https://doi.org/10.1121/1.4817846
  5. L. Muzi, M. Siderius, J. E. Quijano, and S. E. Dosso, "High resolution bottom-loss estimation using the ambient-noise vertical coherence function," J. Acoust. Soc. Am. 137, 481-491 (2014).
  6. S. Cho and J. W. Choi, "Vertical coherence measurements of ambient noise in shallow water off the east coast of Korea," Jpn. J. Appl. Phys. 50, 07HG01-1-4(2011). https://doi.org/10.7567/JJAP.50.07HG01
  7. J. S. Park and H. R. Kim, "Measurement of spatial coherence of active acoustic sensor array signal" (in Korean), J. Acoust. Soc. Kr. 31, 205-213 (2012). https://doi.org/10.7776/ASK.2012.31.4.205
  8. G. B. Deane, M. J. Buckingham, and C. T. Tindle "Vertical coherence of ambient noise in shallow water overlying a fluid seabed," J. Acoust. Soc. Am. 102, 3413-3424 (1997). https://doi.org/10.1121/1.419583
  9. H. Cox, "Spatial correlation in arbitrary noise fields with application to ambient sea noise," J. Acoust. Soc. Am. 54, 1289-1301 (1973). https://doi.org/10.1121/1.1914426
  10. B. F. Cron and C. H. Sherman, "Spatial correlation function for various noise models," J. Acoust. Soc. Am. 34, 1732-1736 (1962). https://doi.org/10.1121/1.1909110
  11. W. S. Liggett Jr. and M. J. Jacobson, "Noise covariance and vertical directivity in a deep ocean," J. Acoust. Soc. Am. 39, 280-288 (1966). https://doi.org/10.1121/1.1909888
  12. S. W. Yoon, L. A. Crum, A. Prosperetti, and N. Q. Lu, "An investigation of the collective oscillations of a bubble cloud," J. Acoust. Soc. Am. 89, 700-706 (1991). https://doi.org/10.1121/1.1894629
  13. A. Prosperetti, "Bubble-related ambient noise in the ocean" J. Acoust. Soc. Am. 84, 1042-1054 (1988). https://doi.org/10.1121/1.396740
  14. W. M. Carey and D. G. Browning, In sea surface sound, edited by B. R. Kerman (Kluwer Academic, Dorderecht, 1988), pp. 361.
  15. M. L. Banner and D. H. Cato, In sea surface sound, edited by B. R. Kerman (Kluwer Academic, Dorderecht, 1988), p. 429.
  16. H. Medwin and M. M. Beaky, "Bubble sources of the Knudsen sea noise spectra," J. Acoust. Soc. Am. 86, 1124-1130 (1989). https://doi.org/10.1121/1.398104
  17. M. J. Buckingham, "A theoretical model of ambient noise in a low-loss, shallow water channel," J. Acoust. Soc. Am. 67, 1186-1192 (1980). https://doi.org/10.1121/1.384161
  18. B. F. Cron and C. H. Sherman, "Spatial correlation function for various noise models," J. Acoust. Soc. Am. 38, 885 (1965).
  19. W. A. Kuperman and F. Ingenito, "Spatial correlation of surface generated noise in a stratified ocean," J. Acoust. Soc. Am. 67, 1988-1996 (1980). https://doi.org/10.1121/1.384439
  20. Korea Hydrographic and Oceanographic Administration, http://sms.khoa.go.kr/koofs/kor/introduce/sea_wf.asp?wf=current_survey, 2010.
  21. P. T. Arveson, D. J. Vendittis, "Radiated noise characteristics of a modern cargo ship," J. Acoust, Soc. Am. 107, 118-129, (2000). https://doi.org/10.1121/1.428344
  22. B. K. Choi, B. -C. Kim, C. S. Kim, and B. -N. Kim, "Analysis of dependence on wind speed and ship traffic of underwater ambient noise at shallow sea surrounding the Korean Peninsula" (in Korean), J. Acoust. Soc. Kr. 22, 233-241 (2003).
  23. B. F. Cron, B. C. Hassell, and F. J. Keltonic, "Comparison of theoretical and experimental values of spatial correlation," J. Acoust, Soc. Am. 37, 523-529 (1965). https://doi.org/10.1121/1.1909361
  24. M. J. Buckingham and S. A. S. Jones, "A new shallow-ocean technique for determining the critical angle of the seabed from the vertical directionality of the ambient noise in the water column," J. Acoust. Soc. Am. 81, 938-946 (1987). https://doi.org/10.1121/1.394573
  25. G. B. Deane, "Long time-base observations of surf noise," J. Acoust. Soc. Am. 107, 758-770 (2000). https://doi.org/10.1121/1.428259
  26. M. J. Buckingham, "Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments," J. Acoust. Soc. Am. 102, 2579-2596 (2000).

Cited by

  1. Overview of the KIOST-HYU Joint Experiment for Acoustic Propagation in Shallow Water Geological Environment vol.34, pp.6, 2015, https://doi.org/10.7776/ASK.2015.34.6.411