DOI QR코드

DOI QR Code

Measurements of Monostatic Bottom Backscattering Strengths in Shallow Water of the Yellow Sea

서해 천해환경에서 단상태 해저면 후방산란강도 측정

  • 손우주 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 손수욱 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 최지웅 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 조성호 (한국해양과학기술원) ;
  • 정섬규 (한국해양과학기술원)
  • Received : 2015.04.23
  • Accepted : 2015.08.23
  • Published : 2015.11.30

Abstract

Measurements of bottom backscattering strengths in a frequency range of 6-14 kHz were made on the shallow water off the southern Gyeonggi Bay in Yellow Sea in May 2013, as part of the KIOST-HYU joint acoustics experiment. Geological surveys for the experimental area were performed using multi-beam echo sounder, sparker system, and grab sampling to investigate the bottom topography, sub-bottom profile and composition of surficial sediment, respectively. In this paper, the backscattering strengths as a function of grazing angle (in range of $28^{\circ}{\sim}69^{\circ}$) were estimated and compared to the predictions obtained by Lambert's law and APL-UW scattering model. Finally, the effects of geoacoustic parameters corresponding to the experimental area on the backscattering strengths are discussed.

한국해양과학기술원과 한양대학교가 2013년 5월 서해 경기만 남부의 연안해역에서 공동으로 수행한 해양음향 실험에서 주파수 6 ~ 14 kHz에 대한 해저면 후방산란강도 측정이 실시되었다. 실험해역의 지질 환경 특성은 다중빔 음향측심기, 스파커, 그랩을 이용하여 조사되었으며, 이로부터 정밀 해저지형 및 해저면 하부지층 구조, 표층 퇴적물 구성성분에 대한 자료를 획득하였다. 본 논문에서는 수평입사각 $28^{\circ}{\sim}69^{\circ}$에 대한 해저면 후방산란강도 결과를 도출하여 람베르트 법칙(Lambert's law) 및 APL-UW 산란 모델과 비교하였다. 또한 실험해역의 해양물리/지형학적 특성을 고려하여 해저면 후방산란 특성에 영향을 미치는 지음향 인자들에 대한 토의를 수행하였다.

Keywords

References

  1. R. J. Urick, Principles of Underwater Sound 3rd ed., (McGraw-Hill, NewYork, 1983) pp. 237-238.
  2. S. Cho, D. Kang, C. -K. Lee, S. -K. Jung, J. W. Choi, and S. Oh, "Overview of results from the KIOST-HYU joint experiment for studying on acoustic propagation in shallow geological environment" (in Korean), J. Acoust. Soc. Kr. 34, 411-422 (2015). https://doi.org/10.7776/ASK.2015.34.6.411
  3. R. L. Folk, "The distinction between grain size and mineral composition in sedimentary-rock nomenclature," J. Geology 62, 344-359 (1954). https://doi.org/10.1086/626171
  4. R. E. Francois and G. R. Garrison, "Sound absorption based on ocean measurements: Part II: Boric acid contribution and equation for total absorption," J. Acoust. Soc. Am. 72, 1879-1890 (1982). https://doi.org/10.1121/1.388673
  5. H. La and J. W. Choi, "8-kHz bottom backscattering measurements at low grazing angles in shallow water," J. Acoust. Soc. Am. 127, EL160-165 (2010). https://doi.org/10.1121/1.3338987
  6. N. C. Makris, "The effect of saturated transmission scintillation on ocean acoustic intensity measurements," J. Acoust. Soc. Am. 100, 769-783 (1996). https://doi.org/10.1121/1.416239
  7. K. V. Mackenzie, "Bottom reverberation for 530- and 1030-cps sound in deep water," J. Acoust. Soc. Am. 33, 1498-1504 (1961). https://doi.org/10.1121/1.1908482
  8. D. R. Jackson and M. D. Richardson, High-Frequency Seafloor Acoustics, (Springer, New York, 2006) pp. 171-175, 182-192, 237-238.
  9. D. Tang, "Fine-scale measurements of sediment roughness and subbottom variabililty," IEEE J. Oceanic Eng. 29, 929-939 (2004). https://doi.org/10.1109/JOE.2004.834176

Cited by

  1. Overview of the KIOST-HYU Joint Experiment for Acoustic Propagation in Shallow Water Geological Environment vol.34, pp.6, 2015, https://doi.org/10.7776/ASK.2015.34.6.411
  2. Performance of Time Reversal Based Underwater Target Detection in Shallow Water vol.7, pp.11, 2017, https://doi.org/10.3390/app7111180
  3. Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling vol.53, pp.5, 2016, https://doi.org/10.5573/ieie.2016.53.5.055