DOI QR코드

DOI QR Code

Combustion Properties of Major Wood Species Planted in Indonesia

인도네시아 주요 조림수종의 연소특성

  • Park, Se-Hwi (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Hidayat, Wahyu (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Qi, Yue (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Febrianto, Fauzi (Faculty of Forestry, Bogor Agricultural University) ;
  • Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
  • 박세휘 (강원대학교 산림환경과학대학) ;
  • 장재혁 (강원대학교 산림환경과학대학) ;
  • ;
  • ;
  • ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2015.07.06
  • Accepted : 2015.08.19
  • Published : 2015.11.25

Abstract

This study was performed to understand combustion properties four major Indonesian wood species such as Albizia, Gmelina, Mangium and Mindi were investigated by cone-calorimeter for better utilization of theses wood species. Heat release rate (HRR), total heat release (TSR), specific mass loss rate (SMLR), effective heat of combustion (EHC), time to ignition (TTI), flame time (FT), specific extinction area (SEA), smoke production rate (SPR) and CO compound production rate were measured. HRR, THR and FT were proportional to the density of woods. Albizia showed the highest HRR, while Mindi had the lowest HRR. For SPR, Albizia showed the highest value due to its higher SEA. On the other hand, Mindi had the lowest SPR due to a lower SEA value. The highest smoke emission was for Albizia at the beginning of combustion. After 300 seconds, smoke emission of Gmleina and Mangium was increased greatly. Mangium and Mindi showed the highest total carbon dioxide emission. Expecially, Gmelina released the highest carbon monoxide during the combustion period and presented three times higher $CO/CO_2$ ratio than those of other species due to incomplete combustion.

본 연구에서는 인도네시아 조림지에서 생장한 4수종의 효율적 활용방안을 마련하기 위해 콘칼로리미터법에 의해 연소특성을 조사하였다. 그 결과, 평균열방출량($HRR_{mean}$)은 비중에 비례하였으며, 총열방출량(THR) 및 연소시간(FT) 등열관련 계수도 같은 경향을 나타냈다. Albizia는 열방출 시간이 짧았고, Mindi는 4수종 중 점화시간(TTI)과 연소시간(FT)이 길어져 4수종 중 연소속도가 늦었고, 열방출 시간도 가장 길게 이어져 결국은 Mangium 수종과 비슷한 총열방출률을 나타내는 것을 확인할 수 있었다. Albizia는 공시수종 중 가장 높은 비소화면적 값을 나타내어 연기발생비율이 높았고, 반대로 Mindi는 가장 낮은 비소화면적 값을 나타내 연기발생비율이 낮았다. 초기 연기방출률은 Albizia가 높았으나 이후에는 Gmelina와 Mangium 의 연기방출률이 높아져 총연기발생량이 높게 나타났다. Gmelina는 불완전연소로 인해 연소기간 중 가장 많은 일산화탄소 연기를 생성하였고, $CO/CO_2$ 비율은 다른 수종에 비해 3배 이상 높았다.

Keywords

References

  1. Audeber M., Dhima D., Taazount M., Bouchair, A. 2013. Thermo-mechanical behaviour of timber-to-tiber conections exposed to fire. Fire Safety Journal 56: 52-64. https://doi.org/10.1016/j.firesaf.2013.01.007
  2. Babrauskas, V. 1984. Development of cone calorimeter: A bench-scale consumption. Fire and Materials 8(2): 81-95. https://doi.org/10.1002/fam.810080206
  3. Babrauskas, V., Grayson, S.J. 1992. Heat release in fires. E&FN Spon (Chapman and Hall), London, UK.
  4. Baysal, E., Altinok, M., Colak, M., Ozaki, S.K., Toker, H. 2007. Fire Resistance of Douglas fir (Psedotuga menzieesi) treated with borates and natural extractives. Bioresources Technology 98: 1101-1105. https://doi.org/10.1016/j.biortech.2006.04.023
  5. Brostow W., Menard K., Menard, N. 2009. Combustion properties of several species of wood. Chemistry & Chemical Technology 3(3): 173-176.
  6. Choi, J.M. 2011. A study on combustion characteristics of fire retardant treated Pinus densiflora and Pinus koraiensis. Journal of the Korean Wood Science and Technology 39(3): 244-251. https://doi.org/10.5658/WOOD.2011.39.3.244
  7. Chun, Y.J., Jin, E. 2010. Combustion characteristics of the Pinus rigida and Castanea savita dried at room temperature. Journal of Korean Institute of Fire Science and Engineering 24(3): 86-92.
  8. Drysdale D. 1996. An introduction to fire dynamics. john Wily & Sons, USA.
  9. Hull R.T. and Paul K.T. 2007. Bench-scale assessment of combustion toxicity - a critical analysis of current protocols. Fire safety Journal 42(5): 340-365. https://doi.org/10.1016/j.firesaf.2006.12.006
  10. Jang, S.R., Jang, J.H., Kim, J.H., Febrianto, F., Kim, N.H. 2014. Anatomical characteristics of major plantation species growing in Indonesia II. Journal of the Korean Wood Science and Technology 42(6): 635-645. https://doi.org/10.5658/WOOD.2014.42.6.635
  11. Kim, C.J., Masataka, A., Kang, K.K. 1999. Combustion characteristics of wood chips (II)- Flame shape of combustion and ignition delay. Journal of the Korean Society of Industrial Application 2(2): 139-146.
  12. Kim, J.H., Jang, J.H., Kwon, S.M., Febrianto, F. Kim, N.H. 2012. Anatomical properties of major planted and promising species growing in Indonesia. Journal of the Korean Wood Science and Technology 40(4): 244-256. https://doi.org/10.5658/WOOD.2012.40.4.244
  13. Kim, J.H., Jang, J.H., Ryu, J.Y., Febrianto, F., Hwang, W.J., Kim, N.H. 2014. Physical and mechanical properties of major plantation and promising tree species grown in Indonesia(I). Journal of the Korean Wood Science and Technology 42(4): 467-476. https://doi.org/10.5658/WOOD.2014.42.4.467
  14. Korean Agency for Technology and Standard. 2006. Reaction to fire test-Heat release, smoke production and mass loss late - Part 1 : Heat release rate(Cone calorimeter method). KS F ISO 5660-1.
  15. Park S.B., Park, J.S. 2012. Combustion characteristics of bamboo charcoal boards. Journal of the Korean Wood Science and Technology 40(1): 19-25. https://doi.org/10.5658/WOOD.2012.40.1.19
  16. Pearce, F.M., Khanna, Y.P., Raucher, D. 1981. Thermal analysis in polymer flammability. Chapter 8: Thermal characterization of polymeric materials. Academic press. New York. USA.
  17. Quintiere, J.G. 1992. A semi-quantitative model for the burning rate of solid materials. NISTIR 4840, National institute of standards and technology, Gaithersburg, MD.
  18. Ragland. K.W. and Aerts D.J. 1991. Properties of wood for combustion analysis. Bioresource Technology 37: 161-168. https://doi.org/10.1016/0960-8524(91)90205-X
  19. Shafizadeh, F., Degroot, W.F. 1976. Combustion characteristics of cellulosic fuels in : Tillman, thermal uses and properties of carbohydrates and lignins. Academic press. New York, USA.
  20. Son, D.W. and Kang, S.G. 2014. Combustion Properties of Woods for Indoor Use (I). Journal of the Korean Wood Science and Technology 42(6): 675-681. https://doi.org/10.5658/WOOD.2014.42.6.675
  21. Son, D.W., Kang, M.R., Son, S.W., So, I.S., Park, S.B. 2014. Comparison of combustion characteristics of woods used in indoor. Proc. of 2014 Annual Meeting of The Korean Society of Wood Science and Technology. Cheong-Ju, Republic of Korea. pp. 348-349.
  22. Tran, H.C., White, R.H. 1992. Burning rate of solid wood measured in a heat release calorimeter. Fire and Materials 16: 197-206. https://doi.org/10.1002/fam.810160406