DOI QR코드

DOI QR Code

A student's conceiving a pattern of change between two varying quantities in a quadratic functional situation and its representations: The case of Min-Seon

이차함수에서 두 변량사이의 관계 인식 및 표현의 발달 과정 분석: 민선의 경우를 중심으로

  • Received : 2015.08.28
  • Accepted : 2015.11.05
  • Published : 2015.11.30

Abstract

The aim of this qualitative case study is twofold: 1) to analyze how an eleventh-grader, Min-Seon, conceive and represent a pattern of change between two varying quantities in a quadratic functional situation, and 2) further to help her form a concept of 'derivative' as a tool to express the relationship with employing a concept of 'rate of change.' The result indicates that Min-Seon was able to construct graphs of piecewise functions that take average rates of change as range of the functions, and managed to conjecture the derivative of a quadratic function, $y=x^2$. In conclusion, we argue that covariational approach could not only facilitate students' construction of an initial function concept, but also support their understanding of the concept of 'derivative.'

Keywords

References

  1. 강향임 (2012). 수학적 모델링 과정에서 접선 개념의 재 구성을 통한 미분계수의 재발명과 수학적 개념 변화, 학교수학 14(4), 409-429. Kang, H.I. (2012). Students' reinvention of derivative concept through construction of tangent lines in the context of mathematical modeling, School Mathematics 14(4), 409-429.
  2. 김남희, 나귀수, 박경미, 이경화, 정영옥, 홍진곤 (2011). 예비교사와 현직교사를 위한 수학교육과정과 교재연구. 서울: 경문사. Kim, N.H., Na, G.S., Park, K., Lee, K.H., Chong, Y.O., & Hong, J.K. (2011). Mathematics curriculum and textbook research for preservice and inservice teachers, Seoul: Kyungmoonsa.
  3. 김원경, 김용대 (2002). 교사의 수학적 지식에 대한 연구-함수 개념과 관련하여, 수학교육 41(1), 101-108. Kim, W.K. & Kim, Y.D. (2002). A study on teachers' knowledge of mathematics - With respect to the concept of function, The Mathematics Education 41(1), 101-108.
  4. 계승혁, 하길찬 (2010). 우리나라 고등학교 수학 교과서에서 함수의 증감과 극대.극소를 설명하는 방식에 대한 비판적 논의, 수학교육 49(2), 247-257. Kye, S.H. & Ha, K.C. (2010). A critical analysis on an explanation for monotonicity and local extrema of functions in Korean mathematics textbooks, The Mathematics Education, 49(2), 247-257.
  5. 모성준 (2013). 함수적 상황에서 중학교 1학년 학생들의 공변 수준에 관한 사례연구. 한국교원대학교 석사학위논문. Mo, S.J. (2013). A case study of seventh grade students' covariational reasoning in functional situations, Master's thesis, Korea National University of Education.
  6. 변희현, 주미경 (2012). 우리나라 중학생의 함수 개념화 특성, 수학교육학연구 22(3), 353-370. Byun, H.H. & Ju, M.K. (2012). Korean middle school students' conception of function, Journal of Educational Research in Mathematics 22(3), 353-370.
  7. 신은주 (2006). 등가속도 운동에서 미적분의 기본 아이디어 학습 과정에 관한 사례연구, 수학교육학연구 16(1), 59-78 Shin, E.J. (2006). A case study on learning of fundamental idea of calculus in constant acceleration movement, Journal of Educational Research in Mathematics 16(1), 59-78.
  8. 연용호, 이상한, 임성모, 한재영 (1996), 교과과정상의 미분개념에 관한 대수적 고찰, 수학교육, 35(1), 101-107. Yon, Y.H, Lee. S.H., Im, S.M. & Han, J.Y. (1996). Algebraic analysis on the derivative concept. The Mathematics Education 35(1), 101-107.
  9. 이현주, 류중현, 조완영 (2015). 통합적 이해의 관점에서 본 고등학교 학생들의 미분계수 개념 이해 분석, 수학교육논문집, 29(1), 131-155. Lee, H.J. & Ryu, J.H. & Cho, W.Y. (2015), An analysis on the understanding of high school students about the concept of a differential coefficient based on integrated understanding, Communications of Mathematical Education 29(1), 131-155.
  10. 임재훈, 박교식 (2004). 학교 수학에서 접선 개념 교수 방안 연구, 수학교육학연구 14(2), 171-185 Yim, J.H. & Park, K.S. (2004). Teaching and learning concepts of tangent in school mathematics, Journal of Educational Research in Mathematics 19(1), 171-185.
  11. 정연준, 이경화 (2009). 미적분의 기본정리에 대한 고찰 - 속도 그래프 아래의 넓이와 거리의 관계를 중심으로, 수학교육학연구 19(1), 123-142. Joung, Y.J. & Lee, K.H. (2009). A study on the fundamental theorem of calculus: Focused on the relation between the area under time-velocity graph and distance, Journal of Educational Research in Mathematics 19(1), 123-142.
  12. 최영주, 홍진곤 (2014). 도함수의 성질에 관련한 학생들의 사고에 대하여, 수학교육 53(1), 25-40. Choi, Y.J. & Hong, J.K. (2014), On the students' thinking of the properties of derivatives, The Mathematics Education 53(1), 25-40.
  13. Castillo-Garsow, C. (2012). Continuous quantitative reasoning. In R. Mayes, R. Bonillia, L. L. Hatfield & S. Belbase (Eds.), Quantitative reasoning: Current state of understanding WISDOMe Monographs (Vol. 2, pp. 55-74). Laramie, WY: University of Wyoming Press.
  14. Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education 33(5), 352-378. https://doi.org/10.2307/4149958
  15. Cho. H. H., Shin, D. J., & Woo, A. S. (2012). Development of covariational reasoning in LOGO-based JavaMAL, Microworld. Research in Mathematics Education 16(3), 1-13.
  16. Confrey, J., & Lachance, A. (2000). Transformative teaching experiments through conjecture-driven research design. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 231-266). Mahwah, NJ: Lawrence Erlbaum Associates.
  17. Confrey, J. & Smith, E. (1991). A framework for functions: Prototypes, multiple representations, and transformation. In R. Underhill & C. Brown (Eds.), Proceedings of the Thirteenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 57-63). Blacksburg, VA: Virginia Polytechnic Institute & State University.
  18. Confrey, J. & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2), 135-164. https://doi.org/10.1007/BF01273661
  19. Confrey, J. & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education 26(1), 66-86. https://doi.org/10.2307/749228
  20. Ellis, A. B. (2011). Algebra in the middle school: Developing functional relationship through quantitative reasoning. In J. Cai, & E. Knuth (Eds.), Early algebraization (pp. 215-238). Springer-Verlag Berlin Heidelberg.
  21. Hauger, G. S. (1995). Rate of change knowledge in high school and college students. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
  22. Lesh, R., & Clarke, D. (2000). Formulating operational definitions of desired outcomes of instruction in mathematics and science education. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 113-150). Mahwah, NJ: Lawrence Erlbaum Associates.
  23. Ronau, R. N., Meyer, D., & Crites, T. (2014) Putting essential understanding of functions into practice in grade 9-12. Reston, VA: National Council of Teachers of Mathematics.
  24. Steffe, L. P. & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267-306). Mahwah, NJ: Lawrence Erlbaum Associates.
  25. Thompson, P. W. (1994). Images of rate and operational understanding of the Fundamental Theorem of Calculus. Educational Studies in Mathematics 26(2-3), 229-274. https://doi.org/10.1007/BF01273664
  26. Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundation of mathematics education. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Education (pp 45-64) Morelia, Mexico. PME.
  27. Stroup, W. (2002). Understanding qualitative calculus: A structural synthesis of learning research. International Journal of Computers for Mathematical Learning 7, 167-215. https://doi.org/10.1023/A:1021147132127
  28. Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. CBMS Issues in Mathematics Education 8, 103-122.

Cited by

  1. The Process of Constructing Speed-time Function from Distance-Time Function y=2χ by Students Using Different Reasoning Methods for Continuous Change vol.31, pp.2, 2021, https://doi.org/10.29275/jerm.2021.31.2.153