DOI QR코드

DOI QR Code

Bending Creep Performance of Domestic Wood-Concrete Hybrid Laminated Materials

국내산 목재-콘크리트 복합적층재의 휨 크리프 성능

  • Cho, Young-june (Department of Environmental Materials Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Byeon, Jin-Woong (Department of Environmental Materials Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Lee, Je-Ryong (Department of Environmental Materials Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Sung, Eun-Jong (Department of Environmental Materials Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Park, Han-Min (Department of Environmental Materials Science, Institute of Agriculture & Life Science, Gyeongsang National University)
  • 조영준 (경상대학교 환경재료과학과, 농업생명과학연구원) ;
  • 변진웅 (경상대학교 환경재료과학과, 농업생명과학연구원) ;
  • 이제룡 (경상대학교 환경재료과학과, 농업생명과학연구원) ;
  • 성은종 (경상대학교 환경재료과학과, 농업생명과학연구원) ;
  • 박한민 (경상대학교 환경재료과학과, 농업생명과학연구원)
  • Received : 2015.09.15
  • Accepted : 2015.10.20
  • Published : 2016.01.25

Abstract

In order to develop materials with a low environmental load for restoring the destroyed forest, seven types of wood-concrete hybrid laminated materials were manufactured with four softwoods, three hardwoods and concrete, and the effect of wood density on bending creep property was investigated. The bending creep curves showed a shape to considerably increase at the upper right side, and the curves were found to show a linear behavior beyond about 30 min - 1 hour, as behaviors of solid woods and wood-based materials. The initial compliances of wood-concrete hybrid-laminated materials decreased with an increase in the wood density, and those values showed 0.9 - 1.2 times of the concrete one. The creep compliances of hybrid laminated materials showed very low values, which were 0.4 - 0.8 times of the concrete ones. The relative creep were very low with a range from 8.2% to 17.0% range, which were 0.3 - 0.7 times of the concrete ones. These results indicate that these materials can be applied for restoring the destroyed forest to reduce creep deformation of the conventional concrete materials by hybrid-laminating concrete and woods.

이 연구에서는 환경부하가 적은 산림훼손지 생태복원재료의 개발을 목적으로, 콘크리트와 국내산 침엽수 4종, 국내산 활엽수 3종의 제재라미나를 복합적층하여, 휨 크리프 성능에 미치는 수종의 밀도의 영향을 조사하였다. 목재-콘크리트 복합적층재의 휨 크리프곡선은 수종에 관계없이 시간에 따라 크리프곡선의 우측상변이 현저히 증가하는 형태를 나타내었고, 하중부하 후 약 30분 - 1시간 이후에서는 목재 및 목질재료와 같이 거의 직선적인 거동을 나타내는 것이 확인되었다. 목재-콘크리트 복합적층재의 초기변형은 수종의 밀도의 증가에 비례하여 변형이 감소하였고, 이 값은 콘크리트의 0.9 - 1.2배의 값을 나타내었다. 목재-콘크리트 복합적층재의 크리프변형은 콘크리트의 0.4 - 0.8배의 낮은 값을 나타내어 복합적층에 의한 콘크리트의 크리프변형의 현저한 감소가 확인되었다. 목재-콘크리트 복합적층재의 상대 크리프는 8.2 - 17.0%의 범위로 복합적층에 의해 콘크리트의 그것보다 0.3 - 0.7배의 매우 낮은 값을 나타내는 것이 확인되었다. 이 결과는 목재와 콘크리트의 복합적층에 의해 기존 콘크리트재료의 크리프변형을 감소시킨 산림훼손지 생태복원재료로 응용가능성을 나타낸다.

Keywords

References

  1. Aratake, S., Arima, T. 1995. Creep of sugi sawn lumber in process of humidity changes. Mokuzai Gakkaishi 41: 359-366.
  2. Aratake, S., Morita, H., Arima, T. 2002. Creep of various structural members in ambient conditions- estimation of future deflections considering the longevity of wooden structures. Mokuzai Gakkaishi 48: 233-240.
  3. Arima, T., Masatoshi, S., Megumiware, M. 1981. Studies on the long-term strength evaluation of woody material and member. Architectural research report. 95: 35-38.
  4. Byeon, J.W., Cho, Y.J., Lee, J.R., Park, H.M. 2016. Static Bending Strength Performance of Domestic Wood-Concrete Hybrid Laminated Materials. Journal of the Korean Wood Science and Technology 44(1): 48-56. https://doi.org/10.5658/WOOD.2016.44.1.48
  5. Cho, J.W. 2011. $CO^{2}$ Reduction Cement Technologies. Journal of Korea Concrete Institute 23(6): 32-35.
  6. Cho, E.R. 2011. A study on the Trend of Environmental preservation and Liability Law in European Union. Journal of Korean Environmental Law Association 33(2): 407-434.
  7. Choi, J.J., Moon, S.K. 2012. A Study of Trend for Recycling Technology of Waste Wood and Its Utilization as Lightweight Fine Aggregate. Journal of Korean Recycled Construction Resource Institute 7(2): 84-90.
  8. Gerber, A., Tannert, T. 2015. Timber-Concrete Composites Using Flat-Plate Engineered Wood Products. Structures Congress pp. 2314-2325.
  9. Hoyle, R.J., Itani, R., Anderson, J.T. 1994. The effect of moisture cycling on creep of small glued laminated beams. Wood Fiber Science 26: 556-562.
  10. Jang, S.S., Kim, Y.H., Jang, Y.I. 2009. Mechanical Properties of Composite Materials Composed of Structural Steel and Structural Glued Laminated Timber. Journal of the Korean Wood Science and Technology 37(4): 300-309.
  11. Kim, J.S., Cho, C.H., Go, S.K., Cho, C.H, Choi, J.S. 2004. An Experimental Study on the Strength and Behavior of Reinforced Concrete Beams Containing Shells. Journal of the Architectural Institute of Korea 20(1): 67-74.
  12. Kim, S.H., Hwang, J.P. 2013. The $CO^{2}$ Emission in the Process of Cement Manufacture Depending on CaO Content. Journal of the Korea Concrete Institute 25(4): 365-370. https://doi.org/10.4334/JKCI.2013.25.4.365
  13. Lee, H.S., Shin, S.W., Tae, S.H. 2009. The Development Status and the Future Research Trend of Sustainable Concrete. Journal of Korea Concrete Institute 21(2): 34-40.
  14. Nakai, K. 1978a. Bending creep test on wood-based boards I. Wood Industry 33(4): 158-160.
  15. Nakai, K. 1978b. Bending creep test on wood-based boards II. Wood Industry 33(6): 247-249.
  16. Park, H.M., Fushitani, M., Kubo, T., Sato, K., Byeon, H.S. 2002. Bending Creep Performance of Cross-Laminated Sugi Wood. Mokuzai Gakkaishi 48(3): 166-177.
  17. Park, H.M., Fushitani, M., Sato, K., Kubo, T., Byeon, H.S. 2006. Bending creep performances of three-ply cross-laminated woods made with five species. Journal of Wood Science 52: 220-229. https://doi.org/10.1007/s10086-005-0750-7
  18. Park, H.M., Fushitani, M. 2007. Bending Creep Property of Wood-Aluminum Hybrid Laminated Material. Mokuzai Gakkaishi 53: 14-24. https://doi.org/10.2488/jwrs.53.14
  19. Park, H.M., Kang, D.H., Choi, Y.E., Ahn, S.Y., Ryu, H.S., Byeon, H.S. 2010. Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards. Journal of the Korean Wood Science and Technology 38(1): 1-10. https://doi.org/10.5658/WOOD.2010.38.1.1
  20. Park, J.C., Hong, S.I. 2008. Strength Properties of GFRP Reinforced Glulam Beams Bonded with Polyvinyl Acetate-Based Emulsion Adhesive. Journal of the Korean Wood Science and Technology 36(4): 19-25.
  21. Yang, K.H., Kim, S.Y., Song, J.K. 2006. The Mechanical Characteristics of Concrete Mixed with Activated Hwangtoh and Specialty Cellulose Fiber. Journal of the Architectural Institute of Korea 22(1): 111-118.