DOI QR코드

DOI QR Code

Biomodification of Ethanol Organolsolv Lignin by Abortiporus biennis and Its Structural Change by Addition of Reducing Agent

Abortiporus biennis에 의한 유기용매 리그닌의 생물학적 변환과 환원제 첨가에 따른 구조 변화

  • Hong, Chang-Young (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Se-Yeong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Seon-Hong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Su-Yeon (Department of Forest Products Engineering, Korea Forest Research Institute) ;
  • Ryu, Sun-Hwa (Department of Forest Products Engineering, Korea Forest Research Institute) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 홍창영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 박세영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김선홍 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이수연 (국립산림과학원 임산공학부) ;
  • 유선화 (국립산림과학원 임산공학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2015.09.14
  • Accepted : 2015.10.23
  • Published : 2016.01.25

Abstract

The main goal of this study was to investigate biomodification mechanism of lignin by white rot fungus, Abortiporus biennis, and to depolymerize ethanol organosolv lignin for industrial application. In nitrogen-limited culture, A. biennis polymerized mainly lignin showing a rapid increase of molecular weight and structural changes depending on incubation days. At the initial incubation days, cleavage of ether bonds increased phenolic OH content, while the results were contrary in of the later part of the culture. Based on these results, ascorbic acid as a reducing agent was used to induce depolymerization of lignin during cultivation with white rot fungus. As a result, the degree of increase of average molecular weight of lignin was significantly declined when compared with those of the ascorbic acid free-experiment, although the molecular weight of fungus treated sample slightly increased than that of control. Furthermore, lignin derived oligomers in culture medium were depolymerized with the addition of ascorbic acid, showing that the average molecular weight was 381 Da, and phenolic OH content was 38.63%. These depolymerized lignin oligomers were considered to be applicable for industrial utilization of lignin. In conclusion, A. biennis led to the polymerization of lignin during biomodification period. The addition of ascorbic acid had a positive effect on the depolymerization and increase of phenolic OH content of lignin oligomers in medium.

본 연구에서는 백색부후균 Abortiporus biennis를 이용하여 유기용매 리그닌의 생물학적 변환을 시도함으로써, 생물학적 변환 기작을 이해하고, 상업적 활용을 위해 유기용매 리그닌의 저분자화를 유도하고자 하였다. 질소제한 배지에서 A. biennis는 주로 유기용매 리그닌의 중합반응을 유도하면서, 분자량을 급격히 증가시켰으며, 배양일에 따라 구조적 차이를 야기하였다. 배양 초기, ether 결합의 분해를 통해 phenolic OH 함량이 증가한 반면, 배양 후기에는 ether 결합이 증가함에 따라 phenolic OH 함량이 감소하였다. 이러한 결과를 바탕으로, 유기용매 리그닌의 탈중합을 유도하기 위해 환원제인 ascorbic acid를 첨가하여 유기용매 리그닌의 구조 변화 및 변환 산물을 분석하였다. 결과적으로, 환원제의 첨가에 의해 유기용매 리그닌의 분자량은 소폭 증가하였지만, 환원제 무첨가 실험에 비해 그 증가 폭이 현저히 감소하였다. 또한 배양액 내 리그닌 올리고머의 경우, 배양 10일째 환원제를 첨가한 실험구에서 중량 평균 분자량 381 Da, phenolic OH 함량 38.63%을 나타냈으며, 이는 저분자화된 형태로 상업적 활용 가치가 높다고 사료된다. 결론적으로, A. biennis의 효소 시스템은 유기용매 리그닌의 분해보다 중합을 야기하였으며, 환원제의 첨가를 통해 배양액 내 리그닌 올리고머의 저분자화 및 phenolic OH 함량 증가를 유도할 수 있었다.

Keywords

References

  1. Baucher, M., Monties, B., Montagu, M.V., Boerjan, W. 1998. Biosynthesis and genetic engineering of lignin. Critical reviews in plant sciences 17(2): 125-197. https://doi.org/10.1016/S0735-2689(98)00360-8
  2. Eriksson, K.-E.L., Blanchette, R.A., Ander, P. 1990. Microbial and enzymatic degradation of wood and wood components. Springer-Verlag.
  3. Gouveia, S., Fernandez-Costas, C., Sanroman, M., Moldes, D. 2013. Polymerisation of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: Effect of operational conditions and black liquor origin. Bioresource technology 131: 288-294. https://doi.org/10.1016/j.biortech.2012.12.155
  4. Huttermann, A., Mai, C., Kharazipour, A. 2001. Modification of lignin for the production of new compounded materials. Applied microbiology and biotechnology 55(4): 387-394. https://doi.org/10.1007/s002530000590
  5. Haemmerli, S.D., Leisola, M.S., Fiechter, A. 1986. Polymerisation of lignins by ligninases from Phanerochaete chrysosporium. FEMS microbiology letters 35(1): 33-36. https://doi.org/10.1111/j.1574-6968.1986.tb01494.x
  6. Higuchi, T. 1986. Catabolic Pathways and Role of Ligninases for the Degradation of Lignin Substructure Models by White-Rot Fungi. Wood research: bulletin of the Wood Research Institute Kyoto University 73: 58-81.
  7. Higuchi, T. 1990. Lignin biochemistry: biosynthesis and biodegradation. Wood Science and Technology 24(1): 23-63. https://doi.org/10.1021/es00071a002
  8. Himmel, M.E. 2009. Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Wiley-Blackwell.
  9. Hong, C.Y., Kim, H.Y., Jang, S.K., Choi, I.G. 2013. Screening of outstanding white rot fungi for biodegradation of organosolv lignin by decolorization of Remazol Brilliant Blue R and ligninolytic enzymes systems. Journal of the Korean Wood Science and Technology 41(1): 19-32. https://doi.org/10.5658/WOOD.2013.41.1.19
  10. Iwahara, K., Honda, Y., Watanabe, T., Kuwahara, M. 2000. Polymerization of guaiacol by lignin-degrading manganese peroxidase from Bjerkandera adusta in aqueous organic solvents. Applied microbiology and biotechnology 54(1): 104-111. https://doi.org/10.1007/s002530000340
  11. Johnson, C.W., Beckham, G.T. 2015. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metabolic engineering 28: 240-247. https://doi.org/10.1016/j.ymben.2015.01.005
  12. Kawai, S., Asukai, M., Ohya, N., Okita, K., Ito, T., Ohashi, H. 1999. Degradation of a non-phenolic ${\beta}$-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS microbiology letters 170(1): 51-57. https://doi.org/10.1016/S0378-1097(98)00523-0
  13. Kawai, S., Umezawa, T., Higuchi, T. 1988. Degradation mechanisms of phenolic ${\beta}$-1 lignin substructure model compounds by laccase of Coriolus versicolor. Archives of biochemistry and biophysics 262(1): 99-110. https://doi.org/10.1016/0003-9861(88)90172-5
  14. Kersten, P.J., Tien, M., Kalyanaraman, B., Kirk, T.K. 1985. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. Journal of Biological Chemistry 260(5): 2609-2612.
  15. Kinne, M., Poraj-Kobielska, M., Ralph, S.A., Ullrich, R., Hofrichter, M., Hammel, K.E. 2009. Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. Journal of Biological Chemistry 284(43): 29343-29349. https://doi.org/10.1074/jbc.M109.040857
  16. Kinne, M., Poraj-Kobielska, M., Ullrich, R., Nousiainen, P., Sipila, J., Scheibner, K., Hammel, K.E., Hofrichter, M. 2011. Oxidative cleavage of non-phenolic${\beta}$-O-4 lignin model dimers by an extracellular aromatic peroxygenase. Holzforschung 65(5): 673-679. https://doi.org/10.1515/hf.2011.057
  17. Kudanga, T., Nyanhongo, G.S., Guebitz, G.M., Burton, S. 2011. Potential applications of laccase- mediated coupling and grafting reactions: a review. Enzyme and microbial technology 48(3): 195-208. https://doi.org/10.1016/j.enzmictec.2010.11.007
  18. Linger, J.G., Vardon, D.R., Guarnieri, M.T., Karp, E.M., Hunsinger, G.B., Franden, M.A., Johnson, C.W., Chupka, G., Strathmann, T.J., Pienkos, P.T. 2014. Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences 111(33): 12013-12018.
  19. Liu, J., Ye, L., Weiping, Y. 1999. Copolymerization of lignin with cresol catalysed by peroxidase in reversed micellar systems. Electronic Journal of Biotechnology 2(2): 7-8.
  20. Lora, J.H., Glasser, W.G. 2002. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 10(1-2): 39-48. https://doi.org/10.1023/A:1021070006895
  21. Martinez, A.T., Speranza, M., Ruiz-Duenas, F.J., Ferreira, P., Camarero, S., Guillen, F., Martinez, M.J., Gutierrez, A., del Rio, J.C. 2010. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8(3): 195-204.
  22. Meister, J.J. 2002. Modification of Lignin. Journal of Macromolecular Science, Part C: Polymer Reviews 42(2): 235-289. https://doi.org/10.1081/MC-120004764
  23. Morohoshi, N., Haraguchi, T., Wariishi, H., Muraiso, C., Nagai, T. 1987. Degradation of lignin by the extracellular enzymes of Coriolus versicolor, 4: Properties of three laccase fractions fractionated from the extracellular enzymes. Journal of the Japan Wood Research Society (Japan).
  24. Nugroho Prasetyo, E., Kudanga, T., Ostergaard, L., Rencoret, J., Gutierrez, A., del Rio, J.C., Ignacio Santos, J., Nieto, L., Jimenez-Barbero, J., Martínez, A.T. 2010. Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource technology 101(14): 5054-5062. https://doi.org/10.1016/j.biortech.2010.01.048
  25. Onnerud, H., Zhang, L., Gellerstedt, G., Henriksson, G. 2002. Polymerization of Monolignols by Redox Shuttle-Mediated Enzymatic Oxidation A New Model in Lignin Biosynthesis I. The Plant Cell 14(8): 1953-1962. https://doi.org/10.1105/tpc.001487
  26. Pointing, S. 2001. Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology 57(1-2): 20-33. https://doi.org/10.1007/s002530100745
  27. Pollegioni, L., Tonin, F., Rosini, E. 2015. Lignin-degrading enzymes. FEBS Journal 282(7): 1190-1213. https://doi.org/10.1111/febs.13224
  28. Sahoo, S., Seydibeyoglu, M., Mohanty, A., Misra, M. 2011. Characterization of industrial lignins for their utilization in future value added applications. Biomass and bioenergy 35(10): 4230-4237. https://doi.org/10.1016/j.biombioe.2011.07.009
  29. Schmidt, O. 2006. Wood and tree fungi. Springer.
  30. Sena-Martins, G., Almeida-Vara, E., Duarte, J. 2008. Eco-friendly new products from enzymatically modified industrial lignins. Industrial crops and products 27(2): 189-195. https://doi.org/10.1016/j.indcrop.2007.07.016
  31. Singh, D., Zeng, J., Laskar, D.D., Deobald, L., Hiscox, W.C., Chen, S. 2011. Investigation of wheat straw biodegradation by Phanerochaete chrysosporium. Biomass and Bioenergy 35(3): 1030-1040. https://doi.org/10.1016/j.biombioe.2010.11.021
  32. Stewart, D. 2008. Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products 27(2): 202-207. https://doi.org/10.1016/j.indcrop.2007.07.008
  33. Tien, M. 1987. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Critical reviews in microbiology 15(2): 141-168. https://doi.org/10.3109/10408418709104456
  34. Tien, M., Kirk, T.K. 1983. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science (Washington) 221(4611): 661-662. https://doi.org/10.1126/science.221.4611.661
  35. Youn, H.D., Hah, Y.C., Kang, S.O. 1995. Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiology Letters 132(3): 183-188. https://doi.org/10.1111/j.1574-6968.1995.tb07831.x

Cited by

  1. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent vol.54, pp.10, 2016, https://doi.org/10.1007/s12275-016-6158-9