DOI QR코드

DOI QR Code

Overview on Peroxiredoxin

  • Rhee, Sue Goo (Yonsei Biomedical Research Institute, Yonsei University College of Medicine)
  • Published : 2016.01.31

Abstract

Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys ($C_P$) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the $C_P$-SH to cysteine sulfenic acid ($C_P$-SOH), which then reacts with another cysteine residue, named the "resolving" Cys ($C_R$) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.

Keywords

References

  1. Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984. https://doi.org/10.1038/nature02075
  2. Causton, H.C., Feeney, K.A., Ziegler, C.A., and O'Neill, J.S. (2015). Metabolic cycles in yeast share features conserved among circadian rhythms. Curr. Biol. 25, 1056-1062. https://doi.org/10.1016/j.cub.2015.02.035
  3. Chae, H.Z., Chung, S.J., and Rhee, S.G. (1994a). Thioredoxindependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
  4. Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., and Rhee, S.G. (1994b). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017-7021. https://doi.org/10.1073/pnas.91.15.7017
  5. Cox, A.G., Pullar, J.M., Hughes, G., Ledgerwood, E.C., and Hampton, M.B. (2008). Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Rad. Biol. Med. 44, 1001-1009. https://doi.org/10.1016/j.freeradbiomed.2007.11.017
  6. Diet, A., Abbas, K., Bouton, C., Guillon, B., Tomasello, F., Fourquet, S., Toledano, M.B., and Drapier, J.C. (2007). Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages. J. Biol. Chem. 282, 36199-36205. https://doi.org/10.1074/jbc.M706420200
  7. Dietz, K.J. (2016). Thiol-based peroxidases and ascorbate peroxidases:why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol. Cells 39, 20-25. https://doi.org/10.14348/molcells.2016.2324
  8. Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., et al. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459-464. https://doi.org/10.1038/nature11088
  9. Fisher, A.B. (2011). Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid. Redox Signal. 15, 831-844. https://doi.org/10.1089/ars.2010.3412
  10. Furuta, T., Imajo-Ohmi, S., Fukuda, H., Kano, S., Miyake, K., and Watanabe, N. (2008). Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur. J. Immunol. 38, 1341-1350. https://doi.org/10.1002/eji.200738059
  11. Gretes, M.C., Poole, L.B., and Karplus, P.A. (2012). Peroxiredoxins in parasites. Antioxid. Redox Signal. 17, 608-633. https://doi.org/10.1089/ars.2011.4404
  12. Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815. https://doi.org/10.1089/ars.2010.3624
  13. Hampton, M.B., and O'Connor, K.M. (2016). Peroxiredoxins and the regulation of cell death. Mol. Cells 39, 72-76. https://doi.org/10.14348/molcells.2016.2351
  14. Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635. https://doi.org/10.1016/j.cell.2004.05.002
  15. Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., Bae, S.H., and Rhee, S.G. (2012). Feedback control of adrenal steroidogenesis via $H_2O_2$-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46, 584-594. https://doi.org/10.1016/j.molcel.2012.05.030
  16. Kil, I.S., Ryu, K. W., Lee, S.Y., Kim, Y. Y., Chu, S. Y., Kim, J. H., Park, S., Rhee, S. G. (2015). Circadian Oscillation of Sulfiredoxin in the Mitochondria. Mol. Cell 59, 1-13. https://doi.org/10.1016/j.molcel.2015.06.019
  17. Kim, K., Kim, I.H., Lee, K.Y., Rhee, S.G., and Stadtman, E.R. (1988). The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixedfunction oxidation system. J. Biol. Chem. 263, 4704-4711.
  18. Kim, I.H., Kim, K., and Rhee, S.G. (1989). Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc. Natl. Acad. Sci. USA 86, 6018-6022. https://doi.org/10.1073/pnas.86.16.6018
  19. Knoops, B., Goemaere, J., Van der Eecken, V., and Declercq, J.P. (2011). Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 15, 817-829. https://doi.org/10.1089/ars.2010.3584
  20. Knoops, B., Argyropoulou, V., Becker, S., and Ferte, L., Kuznetsova, O. (2016). Multiple roles of peroxiredoxins in inflammation. Mol. Cells 39, 60-64 https://doi.org/10.14348/molcells.2016.2341
  21. Kwon, J., Lee, S.R., Yang, K.S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419-16424. https://doi.org/10.1073/pnas.0407396101
  22. Latimer, H.R., and Veal, E.A. (2016). Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction. Mol. Cells 39, 40-45. https://doi.org/10.14348/molcells.2016.2327
  23. Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366-15372. https://doi.org/10.1074/jbc.273.25.15366
  24. Lim, J.M., Lee, K.S., Woo, H.A., Kang, D., and Rhee, S.G. (2015). Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J. Cell Biol. 210, 23-33.
  25. Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., and Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484, 146-154. https://doi.org/10.1016/j.abb.2008.11.017
  26. Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.G., Kim, C.W., et al. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to $H_2O_2$-induced cell death. J. Biol. Chem. 280, 28775-28784. https://doi.org/10.1074/jbc.M505362200
  27. Mullen, L., Hanschmann, E.M., Lillig, C.H., Herzenberg, L.A., and Ghezzi, P. (2015). Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion. Mol. Med. 21, 98-108. https://doi.org/10.1007/s00894-015-2638-9
  28. Nadeau, P.J., Charette, S.J., Toledano, M.B., and Landry, J. (2007). Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903-3913. https://doi.org/10.1091/mbc.E07-05-0491
  29. Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K., and Inoue, T. (2010). Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 147, 109-115. https://doi.org/10.1093/jb/mvp154
  30. Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964. https://doi.org/10.1002/prot.22936
  31. Netto, L.E.S., and Antunes, F. (2016). The roles of peroxiredoxin and thioredoxin in hydrogen reroxide sensing and in signal transduction. Mol. Cells 39, 65-71. https://doi.org/10.14348/molcells.2016.2349
  32. O'Neill, J.S., and Reddy, A.B. (2011). Circadian clocks in human red blood cells. Nature 469, 498-503. https://doi.org/10.1038/nature09702
  33. O'Neill, J.S., van Ooijen, G., Dixon, L.E., Troein, C., Corellou, F., Bouget, F.Y., Reddy, A.B., and Millar, A.J. (2011). Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554-558. https://doi.org/10.1038/nature09654
  34. Olmedo, M., O'Neill, J.S., Edgar, R.S., Valekunja, U.K., Reddy, A.B., and Merrow, M. (2012). Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 109, 20479-20484. https://doi.org/10.1073/pnas.1211705109
  35. Parsonage, D., Nelson, K.J., Ferrer-Sueta, G., Alley, S., Karplus, P.A., Furdui, C.M., and Poole, L.B. (2015). Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 54, 1567-1575. https://doi.org/10.1021/bi501515w
  36. Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., and Karplus, P.A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40, 435-445. https://doi.org/10.1016/j.tibs.2015.05.001
  37. Poole, L.B., and Nelson, K.J. (2016). Distribution and features of the six classes of peroxiredoxins. Mol. Cells 39, 53-59. https://doi.org/10.14348/molcells.2016.2330
  38. Putker, M., and O'Nell, J.H. (2016). Reciprocal control of the circadian clock and cellular redox state - a critical appraisal. Mol. Cells 39, 6-19. https://doi.org/10.14348/molcells.2016.2323
  39. Rhee, S.G. (2006). Cell signaling. $H_2O_2$, a necessary evil for cell signaling. Science 312, 1882-1883. https://doi.org/10.1126/science.1130481
  40. Rhee, S.G., Kang, S.W., Chang, T.S., Jeong, W., and Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB life 52, 35-41. https://doi.org/10.1080/15216540252774748
  41. Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Rad. Biol. Med. 38, 1543-1552. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
  42. Rhee, S.G., Woo, H.A., Kil, I.S., and Bae, S.H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410. https://doi.org/10.1074/jbc.R111.283432
  43. Riddell, J.R., Wang, X.Y., Minderman, H., and Gollnick, S.O. (2010). Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J. Immunol. 184, 1022-1030. https://doi.org/10.4049/jimmunol.0901945
  44. Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
  45. Salzano, S., Checconi, P., Hanschmann, E.M., Lillig, C.H., Bowler, L.D., Chan, P., Vaudry, D., Mengozzi, M., Coppo, L., Sacre, S., et al. (2014). Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA 111, 12157-12162. https://doi.org/10.1073/pnas.1401712111
  46. Shichita, T., Hasegawa, E., Kimura, A., Morita, R., Sakaguchi, R., Takada, I., Sekiya, T., Ooboshi, H., Kitazono, T., Yanagawa, T., et al. (2012). Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911-917. https://doi.org/10.1038/nm.2749
  47. Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for $H_2O_2$ signaling. Nat. Chem. Biol. 11, 64-70. https://doi.org/10.1038/nchembio.1695
  48. Sun, H.N., Kim, S.U., Huang, S.M., Kim, J.M., Park, Y.H., Kim, S.H., Yang, H.Y., Chung, K.J., Lee, T.H., Choi, H.S., et al. (2010). Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J. Neurochem. 114, 39-50.
  49. Tartaglia, L.A., Storz, G., Brodsky, M.H., Lai, A., and Ames, B.N. (1990). Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J. Biol. Chem. 265, 10535-10540.
  50. Toledano, M.B., and Huang, B. (2016). Microbial 2-Cys Prxs: insights into their complex physiological roles. Mol. Cells 39, 31-39. https://doi.org/10.14348/molcells.2016.2326
  51. Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., and Radi, R. (2007). Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem Biophys. 467, 95-106. https://doi.org/10.1016/j.abb.2007.08.008
  52. Van Laer, K., and Dick, T.P. (2016). Utilizing natural and engineered peroxiredoxins as intracellular peroxide reporters. Mol. Cells 39, 46-52. https://doi.org/10.14348/molcells.2016.2328
  53. Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., and Hidalgo, E. (2005). A cysteine-sulfinic acid in peroxiredoxin regulates $H_2O_2$-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102, 8875-8880. https://doi.org/10.1073/pnas.0503251102
  54. Winterbourn, C.C. (2013). The biological chemistry of hydrogen peroxide. Methods Enzymol. 528, 3-25. https://doi.org/10.1016/B978-0-12-405881-1.00001-X
  55. Winterbourn, C.C., Peskin, A.V. (2016). Kinetic approaches to measuring peroxiredoxin reactivity. Mol. Cells 39, 26-30. https://doi.org/10.14348/molcells.2016.2325
  56. Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., and Rhee, S.G. (2003). Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteinecontaining sequence. J. Biol. Chem. 278, 47361-47364. https://doi.org/10.1074/jbc.C300428200
  57. Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140, 517-528. https://doi.org/10.1016/j.cell.2010.01.009
  58. Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003a). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. https://doi.org/10.1126/science.1080405
  59. Wood, Z.A., Schroder, E., Robin Harris, J., and Poole, L.B. (2003b). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
  60. Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., and Rhee, S.G. (2002). Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem 277, 38029-38036. https://doi.org/10.1074/jbc.M206626200

Cited by

  1. Discovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 fromSulfolobus solfataricusProtects H9c2 Cardiomyoblasts from Oxidative Stress vol.2016, 2016, https://doi.org/10.1155/2016/7424870
  2. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals vol.51, pp.2, 2017, https://doi.org/10.1080/10715762.2017.1289377
  3. Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging vol.1863, pp.1, 2017, https://doi.org/10.1016/j.bbadis.2016.10.017
  4. Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane vol.50, pp.12, 2016, https://doi.org/10.1080/10715762.2016.1241995
  5. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans vol.8, 2017, https://doi.org/10.3389/fmicb.2017.00516
  6. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response vol.91, pp.6, 2017, https://doi.org/10.1111/tpj.13622
  7. Glutathione, Glutaredoxins, and Iron 2017, https://doi.org/10.1089/ars.2017.7132
  8. Peroxiredoxins and Redox Signaling in Plants 2017, https://doi.org/10.1089/ars.2017.7164
  9. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line vol.6, pp.1, 2016, https://doi.org/10.1038/srep32384
  10. Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2 vol.292, pp.21, 2017, https://doi.org/10.1074/jbc.M116.767657
  11. Nrf2-peroxiredoxin I axis in polymorphous adenocarcinoma is associated with low matrix metalloproteinase 2 level 2017, https://doi.org/10.1007/s00428-017-2218-8
  12. Overexpression of AhpC enhances stress tolerance and N 2 –fixation in Anabaena by upregulating stress responsive genes vol.1860, pp.11, 2016, https://doi.org/10.1016/j.bbagen.2016.07.031
  13. Analysis of protein profiling studies of β-thalassemia/Hb E disease vol.10, pp.11, 2016, https://doi.org/10.1002/prca.201600086
  14. Evening and morning peroxiredoxin-2 redox/oligomeric state changes in obstructive sleep apnea red blood cells: Correlation with polysomnographic and metabolic parameters vol.1863, pp.2, 2017, https://doi.org/10.1016/j.bbadis.2016.11.019
  15. Multiple Functions and Regulation of Mammalian Peroxiredoxins vol.86, pp.1, 2017, https://doi.org/10.1146/annurev-biochem-060815-014431
  16. Enhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from Kluyveromyces marxianus vol.10, pp.1, 2017, https://doi.org/10.1186/s13068-017-0766-4
  17. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm vol.100, 2016, https://doi.org/10.1016/j.freeradbiomed.2016.10.011
  18. Mitochondrial H 2 O 2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm vol.99, 2016, https://doi.org/10.1016/j.freeradbiomed.2016.07.029
  19. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate vol.234, 2017, https://doi.org/10.1016/j.foodchem.2017.04.182
  20. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1 vol.10, pp.1, 2017, https://doi.org/10.1186/s13068-017-0735-y
  21. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis 2017, https://doi.org/10.1089/ars.2016.6922
  22. The Role of Peroxiredoxins in the Transduction of H2O2 Signals 2018, https://doi.org/10.1089/ars.2017.7167
  23. Peeking under the Iron Curtain: Development of a Microcosm for Imaging the Colonization of Steel Surfaces by Mariprofundus sp. Strain DIS-1, an Oxygen-Tolerant Fe-Oxidizing Bacterium vol.82, pp.22, 2016, https://doi.org/10.1128/AEM.01990-16
  24. Redox-sensitive alteration of replisome architecture safeguards genome integrity vol.358, pp.6364, 2017, https://doi.org/10.1126/science.aao3172
  25. Cellular Timekeeping: It’s Redox o’Clock vol.10, pp.5, 2017, https://doi.org/10.1101/cshperspect.a027698
  26. Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels vol.144, pp.12, 2017, https://doi.org/10.1242/dev.149518
  27. The Effect of Exogenous Peroxiredoxin 6 on the State of Mesenteric Vessels and the Small Intestine in Ischemia–Reperfusion Injury vol.62, pp.6, 2017, https://doi.org/10.1134/S0006350917060239
  28. Peroxiredoxin I expression in epithelial cells of buccal mucosa from patients exposed to panoramic X-rays: influence of the age vol.22, pp.3, 2018, https://doi.org/10.1007/s00784-017-2254-4
  29. Differential parameters between cytosolic 2-Cys peroxiredoxins, PRDX1 and PRDX2 pp.09618368, 2018, https://doi.org/10.1002/pro.3520
  30. Loss of peroxiredoxin-2 exacerbates eccentric contraction-induced force loss in dystrophin-deficient muscle vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-07639-3
  31. Defenses against Pro-oxidant Forces - Maintenance of Cellular and Genomic Integrity and Longevity vol.190, pp.4, 2018, https://doi.org/10.1667/RR15101.1
  32. activity of peroxiredoxin 6 vol.59, pp.7, 2018, https://doi.org/10.1194/jlr.R082578
  33. Nuclear magnetic resonance affects the circadian clock and hypoxia-inducible factor isoforms in zebrafish pp.1744-4179, 2018, https://doi.org/10.1080/09291016.2018.1498194
  34. Pharmacoproteomics Profiling of Plasma From β-Thalassemia Patients in Response to Hydroxyurea Treatment pp.00912700, 2018, https://doi.org/10.1002/jcph.1297
  35. Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/7857251
  36. The Role of Intermolecular Disulfide Bonds in Stabilizing the Structure of Peroxiredoxins vol.63, pp.2, 2018, https://doi.org/10.1134/S0006350918020203
  37. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications vol.52, pp.5, 2018, https://doi.org/10.1080/10715762.2018.1457217
  38. Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/7607463
  39. Quantitative display of the redox status of proteins with maleimide-polyethylene glycol tagging vol.40, pp.4, 2019, https://doi.org/10.1002/elps.201800335
  40. -Cyclodextrin in Myeloid Cell Lines vol.2019, pp.1687-4129, 2019, https://doi.org/10.1155/2019/4751827
  41. Radioprotective Role of Peroxiredoxin 6 vol.8, pp.1, 2019, https://doi.org/10.3390/antiox8010015
  42. -induced apoptosis after subarachnoid hemorrhage vol.33, pp.2, 2019, https://doi.org/10.1096/fj.201801150R
  43. signaling vol.33, pp.3, 2019, https://doi.org/10.1096/fj.201800235R
  44. Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling vol.8, pp.2, 2019, https://doi.org/10.3390/antiox8020029
  45. Identification of 2-Cys Peroxiredoxin (BmTPx-2) as Antioxidant Active Molecule from Babesia microti vol.8, pp.None, 2016, https://doi.org/10.3389/fmicb.2017.01959
  46. Saccharomyces cerevisiae TSA1의 보존된 아스파트산 잔기 및 세린 잔기의 변이가 과산화효소 활성 및 샤페론 활성에 미치는 영향 vol.45, pp.1, 2016, https://doi.org/10.4014/mbl.1702.02003
  47. Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity vol.474, pp.8, 2016, https://doi.org/10.1042/bcj20160851
  48. Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-16183-x
  49. Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors vol.16, pp.None, 2016, https://doi.org/10.1186/s12934-017-0795-5
  50. Draft genome sequence of Actinotignum schaalii DSM 15541 T : Genetic insights into the lifestyle, cell fitness and virulence vol.12, pp.12, 2016, https://doi.org/10.1371/journal.pone.0188914
  51. A functional connection between dyskerin and energy metabolism vol.14, pp.None, 2018, https://doi.org/10.1016/j.redox.2017.11.003
  52. Peroxiredoxin System of Aspergillus nidulans Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress vol.28, pp.1, 2016, https://doi.org/10.4014/jmb.1707.07024
  53. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells vol.46, pp.3, 2016, https://doi.org/10.1159/000489058
  54. Redoxins as gatekeepers of the transcriptional oxidative stress response vol.21, pp.None, 2016, https://doi.org/10.1016/j.redox.2019.101104
  55. Circatidal gene expression in the mangrove cricket Apteronemobius asahinai vol.9, pp.None, 2016, https://doi.org/10.1038/s41598-019-40197-2
  56. Metformin and Aging: A Review vol.65, pp.6, 2016, https://doi.org/10.1159/000502257
  57. N-acetyl-cysteine in Schizophrenia: Potential Role on the Sensitive Cysteine Proteome vol.26, pp.None, 2016, https://doi.org/10.2174/0929867326666191015091346
  58. Peroxiredoxin III Protects Tumor Suppressor PTEN from Oxidation by 15-Hydroperoxy-eicosatetraenoic Acid vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2828493
  59. Upregulation of Peroxiredoxin 3 Protects Afg3l 2-KO Cortical Neurons In Vitro from Oxidative Stress: A Paradigm for Neuronal Cell Survival under Neurodegenerative Conditions vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/4721950
  60. Identification of Proteins and Genes Expressed by Methylophaga thiooxydans During Growth on Dimethylsulfide and Their Presence in Other Members of the Genus vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.01132
  61. Antioxidants Special Issue: Peroxiredoxin 6 as a Unique Member of the Peroxiredoxin Family vol.8, pp.4, 2019, https://doi.org/10.3390/antiox8040107
  62. Protein Redox State Monitoring Studies of Thiol Reactivity vol.8, pp.5, 2016, https://doi.org/10.3390/antiox8050143
  63. Frugoside Induces Mitochondria-Mediated Apoptotic Cell Death through Inhibition of Sulfiredoxin Expression in Melanoma Cells vol.11, pp.6, 2019, https://doi.org/10.3390/cancers11060854
  64. Role of Cytosolic 2-Cys Prx1 and Prx2 in Redox Signaling vol.8, pp.6, 2016, https://doi.org/10.3390/antiox8060169
  65. Inflammation-induced reactive nitrogen species cause proteasomal degradation of dimeric peroxiredoxin-1 in a mouse macrophage cell line vol.53, pp.8, 2016, https://doi.org/10.1080/10715762.2019.1637863
  66. Selenium, Selenoproteins and Viral Infection vol.11, pp.9, 2016, https://doi.org/10.3390/nu11092101
  67. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols : Focus Review vol.119, pp.19, 2016, https://doi.org/10.1021/acs.chemrev.9b00371
  68. Variability in the redox status of plant 2-Cys peroxiredoxins in relation to species and light cycle vol.70, pp.18, 2016, https://doi.org/10.1093/jxb/erz252
  69. Protective role of exogenous recombinant peroxiredoxin 6 under ischemia-reperfusion injury of kidney vol.378, pp.2, 2019, https://doi.org/10.1007/s00441-019-03073-z
  70. The Role of Reactive Oxygen Species in Acute Myeloid Leukaemia vol.20, pp.23, 2019, https://doi.org/10.3390/ijms20236003
  71. Involvement of peroxiredoxin 2 in cumulus expansion and oocyte maturation in mice vol.32, pp.8, 2020, https://doi.org/10.1071/rd19310
  72. Protective Role of Peroxiredoxins against Reactive Oxygen Species in Neonatal Rat Testicular Gonocytes vol.9, pp.1, 2020, https://doi.org/10.3390/antiox9010032
  73. Redox Signaling from Mitochondria: Signal Propagation and Its Targets vol.10, pp.1, 2016, https://doi.org/10.3390/biom10010093
  74. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.01234
  75. Proteomic Analysis of Stationary Growth Stage Adaptation and Nutritional Deficiency Response of Brucella abortus vol.11, pp.None, 2016, https://doi.org/10.3389/fmicb.2020.598797
  76. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions—Focus on S-Nitrosation vol.12, pp.None, 2020, https://doi.org/10.3389/fnagi.2020.00254
  77. Knockout Mouse Models for Peroxiredoxins vol.9, pp.2, 2016, https://doi.org/10.3390/antiox9020182
  78. Triple Combination of Ascorbate, Menadione and the Inhibition of Peroxiredoxin-1 Produces Synergistic Cytotoxic Effects in Triple-Negative Breast Cancer Cells vol.9, pp.4, 2020, https://doi.org/10.3390/antiox9040320
  79. Crystal structure of Akkermansia muciniphila peroxiredoxin reveals a novel regulatory mechanism of typical 2‐Cys Prxs by a distinct loop vol.594, pp.10, 2020, https://doi.org/10.1002/1873-3468.13753
  80. Redox Conformation-Specific Protein–Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis vol.9, pp.6, 2020, https://doi.org/10.3390/antiox9060515
  81. Peroxiredoxin I deficiency increases pancreatic β-cell apoptosis after streptozotocin stimulation via the AKT/GSK3β signaling pathway vol.22, pp.3, 2020, https://doi.org/10.3892/mmr.2020.11279
  82. The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? vol.47, pp.7, 2016, https://doi.org/10.1007/s11033-020-05590-5
  83. Use of peroxiredoxin for preconditioning of heterotopic heart transplantation in a rat vol.22, pp.2, 2020, https://doi.org/10.15825/1995-1191-2020-2-158-164
  84. Whey protein boosts the antioxidant profile of rats by enhancing the activities of crucial antioxidant enzymes in a tissue-specific manner vol.142, pp.None, 2016, https://doi.org/10.1016/j.fct.2020.111508
  85. Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea vol.9, pp.8, 2020, https://doi.org/10.3390/antiox9080703
  86. Deficiency of peroxiredoxin 2 exacerbates angiotensin II-induced abdominal aortic aneurysm vol.52, pp.9, 2020, https://doi.org/10.1038/s12276-020-00498-3
  87. Exploration and quantification of ascorbate affecting peroxidase-catalyzed chromogenic reactions with a recirculating-flow catalysis detection system vol.56, pp.77, 2016, https://doi.org/10.1039/d0cc04163g
  88. Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-71015-9
  89. Testis-specific peroxiredoxin 4 variant is not absolutely required for spermatogenesis and fertility in mice vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-74667-9
  90. Unlocking Survival Mechanisms for Metal and Oxidative Stress in the Extremely Acidophilic, Halotolerant Acidihalobacter Genus vol.11, pp.12, 2016, https://doi.org/10.3390/genes11121392
  91. Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases vol.9, pp.12, 2016, https://doi.org/10.3390/antiox9121292
  92. Assessment of Potential Prognostic Value of Peroxiredoxin 1 in Oral Squamous Cell Carcinoma vol.13, pp.None, 2016, https://doi.org/10.2147/cmar.s319048
  93. Post-Translational Modification of Cysteines: A Key Determinant of Endoplasmic Reticulum-Mitochondria Contacts (MERCs) vol.4, pp.None, 2016, https://doi.org/10.1177/25152564211001213
  94. Thioredoxin-dependent system. Application of inhibitors vol.36, pp.1, 2016, https://doi.org/10.1080/14756366.2020.1867121
  95. Antioxidative Stress: Inhibiting Reactive Oxygen Species Production as a Cause of Radioresistance and Chemoresistance vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6620306
  96. De novo assembly and functional annotation of blood transcriptome of loggerhead turtle, and in silico characterization of peroxiredoxins and thioredoxins vol.9, pp.None, 2021, https://doi.org/10.7717/peerj.12395
  97. Sex-Biased Gene Expression of Mesobuthus martensii Collected from Gansu Province, China, Reveals Their Different Therapeutic Potentials vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/1967158
  98. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS) vol.14, pp.None, 2016, https://doi.org/10.3389/fncel.2020.581950
  99. Protein Expression of Angiotensin-Converting Enzyme 2 (ACE2) is Upregulated in Brains with Alzheimer’s Disease vol.22, pp.4, 2016, https://doi.org/10.3390/ijms22041687
  100. The Dawn of Mitophagy: What Do We Know by Now? vol.19, pp.2, 2016, https://doi.org/10.2174/1570159x18666200522202319
  101. Tyrosine Phosphorylation Modulates Peroxiredoxin-2 Activity in Normal and Diseased Red Cells vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020206
  102. Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020289
  103. Physical Activity and Redox Balance in the Elderly: Signal Transduction Mechanisms vol.11, pp.5, 2016, https://doi.org/10.3390/app11052228
  104. Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations vol.10, pp.3, 2016, https://doi.org/10.3390/antiox10030499
  105. The Role of Non-Coding RNAs in the Neuroprotective Effects of Glutathione vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084245
  106. Induction of apoptosis in indole-3-carbinol-treated lung cancer H1299 cells via ROS level elevation vol.40, pp.5, 2016, https://doi.org/10.1177/0960327120969968
  107. Peroxiredoxins—The Underrated Actors during Virus-Induced Oxidative Stress vol.10, pp.6, 2016, https://doi.org/10.3390/antiox10060977
  108. β-Hydroxybutyrate, a Ketone Body, Potentiates the Antioxidant Defense via Thioredoxin 1 Upregulation in Cardiomyocytes vol.10, pp.7, 2016, https://doi.org/10.3390/antiox10071153
  109. H2O2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans vol.7, pp.8, 2016, https://doi.org/10.3390/jof7080624
  110. Rapid Genomic Evolution Drives the Diversification of Male Reproductive Genes in Dung Beetles vol.13, pp.8, 2016, https://doi.org/10.1093/gbe/evab172
  111. Photosynthesis and chloroplast redox signaling in the age of global warming: stress tolerance, acclimation, and developmental plasticity vol.72, pp.16, 2016, https://doi.org/10.1093/jxb/erab270
  112. Label-free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: Mite allergens and markers reflecting population-related proteome differences vol.249, pp.None, 2021, https://doi.org/10.1016/j.jprot.2021.104356
  113. Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation vol.12, pp.1, 2016, https://doi.org/10.1038/s41467-021-26991-5
  114. PRDX1 is essential for the viability and maintenance of reactive oxygen species in chicken DT40 vol.43, pp.1, 2016, https://doi.org/10.1186/s41021-021-00211-4
  115. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms vol.11, pp.12, 2016, https://doi.org/10.3390/life11121437
  116. Adaptative Up-Regulation of PRX2 and PRX5 Expression Characterizes Brain from a Mouse Model of Chorea-Acanthocytosis vol.11, pp.1, 2022, https://doi.org/10.3390/antiox11010076