DOI QR코드

DOI QR Code

Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube

  • Received : 2014.03.18
  • Accepted : 2016.01.11
  • Published : 2016.02.10

Abstract

This work reports wave propagation in the nanocomposite cylinders that reinforced by straight single-walled carbon nanotubes based on a mesh-free method. Moving least square shape functions have been used for approximation of displacement field in weak form of motion equation. The straight carbon nanotubes (CNTs) are assumed to be oriented in specific or random directions or locally aggregated into some clusters. In this simulation, an axisymmetric model is used and also the volume fractions of the CNTs and clusters are assumed to be functionally graded along the thickness. So, material properties of the carbon nanotube reinforced composite cylinders are variable and estimated based on the Eshelby-Mori-Tanaka approach. The effects of orientation, aggregation and volume fractions of the functionally graded clusters and CNTs on dynamic behavior of nanocomposite cylinders are studied. This study results show that orientation and aggregation of CNTs have significant effects on the effective stiffness and dynamic behaviors.

Keywords

References

  1. Barai, P. and Weng, G.J. (2011), "A theory of plasticity for carbon nanotube reinforced composite", Int. J. Plast., 27, 539-59. https://doi.org/10.1016/j.ijplas.2010.08.006
  2. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-61. https://doi.org/10.1016/j.compositesa.2005.02.006
  3. Foroutan, M. and Moradi-Dastjerdi, R. (2011), "Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method", Acta Mech., 219, 281-90. https://doi.org/10.1007/s00707-011-0448-4
  4. Foroutan, M., Moradi-Dastjerdi, R. and Sotoodeh-Bahreini, R. (2012), "Static analysis of FGM cylinders by a mesh-free method", Steel Compos. Struct., 12, 1-12. https://doi.org/10.12989/scs.2012.12.1.001
  5. Griebel, M. and Hamaekers, J. (2004), "molecular dynamic simulations of the elastic moduli of polymercarbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193, 1773-88. https://doi.org/10.1016/j.cma.2003.12.025
  6. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-23. https://doi.org/10.1016/j.commatsci.2006.06.011
  7. Hosseini, S.M., Akhlaghi, M. and Shakeri, M. (2007), "Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials", Int. J. Comput. Aid. Eng. Softw., 24, 288-303. https://doi.org/10.1108/02644400710735043
  8. Jam, J.E., Pourasghar, A. and Kamarian, S. (2012), "The effect of the aspect ratio and waviness of CNTs on the vibrational behavior of functionally graded nanocomposite cylindrical panels", Polym. Compos., 33, 2036-44. https://doi.org/10.1002/pc.22346
  9. Lancaster, P. and Salkauskas, K. (1981), "Surface generated by moving least squares methods", Math. Comput., 37, 141-58. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  10. Manchado, M.A.L., Valentini, L., Biagiotti, J. and Kenny, J.M. (2005), "Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing", Carbon, 43, 1499-505. https://doi.org/10.1016/j.carbon.2005.01.031
  11. Mokashi, V.V., Qian, D. and Liu, Y.J. (2007), "A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics", Compos. Sci. Technol., 67, 530-40. https://doi.org/10.1016/j.compscitech.2006.08.014
  12. Mollarazi, H.R., Foroutan, M. and Moradi-Dastjerdi, R. (2011), "Analysis of free vibration of functionally graded material (FGM) cylinders by a meshless method", J. Compos. Mater., 46, 507-15.
  13. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-8. https://doi.org/10.1016/j.matdes.2010.04.018
  14. Moradi-Dastjerdi, R., Pourasghar, A., Foroutan, M. and Bidram, M. (2014), "Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method", J. Compos. Mater., 48, 1901-13. https://doi.org/10.1177/0021998313491617
  15. Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-66. https://doi.org/10.1016/j.matdes.2012.07.069
  16. Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. and Sotoudeh-Bahreini, R. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method", J. Reinf. Plast. Compos., 32, 593-601. https://doi.org/10.1177/0731684413476353
  17. Moradi-Dastjerdi, R., Pourasghar, A. and Foroutan, M. (2013), "The effects of carbon nanotube orientation and aggregation on vibrational behavior of functionally graded nanocomposite cylinders by a mesh-free method", Acta Mech., 224, 2817-32. https://doi.org/10.1007/s00707-013-0897-z
  18. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modeling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63, 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
  19. Prylutskyy, Y.I., Durov, S.S., Ogloblya, O.V., Buzaneva, E.V. and Scharff, P. (2000), "Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes", Comput. Mater. Sci., 17, 352-355. https://doi.org/10.1016/S0927-0256(00)00051-3
  20. Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76, 2868-70. https://doi.org/10.1063/1.126500
  21. Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells", Compos. Struct., 93, 2096-108. https://doi.org/10.1016/j.compstruct.2011.02.011
  22. Shi, D.L., Feng, X.Q., Yonggang, Y.H., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elasticproperty of carbon nanotube reinforced composites", J. Eng. Mater. Technol., 126, 250-257. https://doi.org/10.1115/1.1751182
  23. Shokrieh, M. and Roham, R. (2010), "Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber", Mech. Res. Commun., 37, 235-40. https://doi.org/10.1016/j.mechrescom.2009.12.002
  24. Shokrieh, M. and Roham, R. (2010), "On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region", Compos. Struct., 92, 647-52. https://doi.org/10.1016/j.compstruct.2009.09.033
  25. Sobhani Aragh, B., Nasrollah Barati, A.H. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. Part B, 43, 1943-54. https://doi.org/10.1016/j.compositesb.2012.01.004
  26. Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer based carbon nanotube composites", Polym., 47, 1741-8. https://doi.org/10.1016/j.polymer.2006.01.013
  27. Tsai, C., Zhang, C., Jack, D.A., Liang, R. and Wang, B. (2011), "The effect of inclusion waviness and waviness distribution on elastic properties of fiber-reinforced composites", Compos. Part B, 42, 62-70. https://doi.org/10.1016/j.compositesb.2010.09.004
  28. Wagner, H.D., Lourie, O., Feldman, Y. and Tenne, R. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72, 188-90.
  29. Yang, Q.S., He, X.Q., Liu, X., Leng, F.F. and Mai, Y.W. (2012), "The effective properties and local aggregation effect of CNT/SMP composites", Compos. Part B, 43, 33-8. https://doi.org/10.1016/j.compositesb.2011.04.027
  30. Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Math. Model., 36, 1371-94. https://doi.org/10.1016/j.apm.2011.08.037
  31. Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbonnanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447, 51-7. https://doi.org/10.1016/j.msea.2006.10.054

Cited by

  1. Thermoelastic analysis of functionally graded cylinders reinforced by wavy CNT using a mesh-free method 2018, https://doi.org/10.1002/pc.24183
  2. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  3. Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates 2017, https://doi.org/10.1002/zamm.201600209
  4. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  5. Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.071
  6. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  7. Low-velocity impact analysis of carbon nanotube reinforced composite laminates vol.53, pp.1, 2018, https://doi.org/10.1007/s10853-017-1538-z
  8. Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory vol.19, pp.6, 2017, https://doi.org/10.1177/1099636216643425
  9. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  10. Vibration analysis of silica nanoparticle-reinforced concrete pipes filled with compressible fluid surrounded by soil foundation 2018, https://doi.org/10.1002/suco.201700185
  11. Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
  12. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  13. Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.277
  14. Control of Complicated Stress Oscillations in FGPM Thin Plates vol.20, 2017, https://doi.org/10.1016/j.piutam.2017.03.027
  15. Active cancellation of unsteady stress oscillation in a functionally graded piezoelectric thin plate subjected to impact loading vol.67, 2018, https://doi.org/10.1016/j.euromechsol.2017.08.016
  16. Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates vol.23, pp.6, 2016, https://doi.org/10.12989/scs.2017.23.6.657
  17. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2016, https://doi.org/10.12989/gae.2017.12.1.009
  18. Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions vol.24, pp.3, 2016, https://doi.org/10.12989/scs.2017.24.3.359
  19. Mathematical modelling of the stability of carbon nanotube-reinforced panels vol.24, pp.6, 2017, https://doi.org/10.12989/scs.2017.24.6.727
  20. Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.315
  21. The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2016, https://doi.org/10.12989/sem.2018.67.2.115
  22. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.517
  23. Hydraulic and structural considerations of dam's spillway - a case study of Karkheh Dam, Andimeshk, Iran vol.6, pp.1, 2016, https://doi.org/10.12989/smm.2019.6.1.001
  24. Big data in nanocomposites: ONN approach and mesh-free method for functionally graded carbon nanotube-reinforced composites vol.6, pp.2, 2019, https://doi.org/10.1016/j.jcde.2018.05.003
  25. Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT) vol.57, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.57.117
  26. Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions vol.70, pp.6, 2016, https://doi.org/10.12989/sem.2019.70.6.711
  27. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
  28. Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle vol.73, pp.2, 2016, https://doi.org/10.12989/sem.2020.73.2.209
  29. Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.599
  30. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157