DOI QR코드

DOI QR Code

Prevalence and Genetic Characteristics of Meatborne Listeria monocytogenes Isolates from Livestock Farms in Korea

  • Oh, Hyemin (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Kim, Sejeong (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Soomin (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Heeyoung (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Ha, Jimyeong (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Jeeyeon (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Choi, Yukyung (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Choi, Kyoung-Hee (Department of Oral Microbiology, College of Dentistry, Wonkwang University) ;
  • Yoon, Yohan (Department of Food and Nutrition, Sookmyung Women's University)
  • Received : 2016.10.11
  • Accepted : 2016.11.24
  • Published : 2016.12.31

Abstract

This study aimed to evaluate the prevalence of Listeria monocytogenes on livestock farms in Korea and determine their serotypes and genetic correlations. Twenty-five livestock farms in Korea (central: 15, south west: 7, south east: 3) were visited 2-3 times, and 2,018 samples (feces: 677, soil: 680, silage: 647, sludge: 14) were collected. Samples were enriched in LEB (Listeria enrichment broth) and Fraser broth media, and then plated on Palcam agar. The isolates were identified by PCR and 16S rRNA gene sequencing. Then, the sero-types, presence of virulence genes (actA, inlA, inlB, plcB, and hlyA), and antibiotic resistance were determined. Genetic correlations among the isolates were evaluated by analyzing the restriction digest pattern with AscI. Of the 2,018 samples, only 3 (0.15%) soil samples (FI-1-FI-3) from 1 farm in the south east region were positive for L. monocytogenes. Based on biochemical tests and multiplex PCR, the serotype of the isolates were 4ab (FI-1 and FI-3) and 3a (FI-2), which are not common in foodborne L. monocytogenes. The 3a sero-type isolate was positive for all tested virulence genes, whereas the 4ab serotype isolates were only positive for hlyA, actA, and inlA. The isolates were resistant to all 12 tested antibiotics, especially FI-3. The genetic correlations among the isolates were 100% for those of the same serotype and 26.3% for those of different serotypes. These results indicate that the prevalence of L. monocytogenes on livestock farms in Korea is low; however, the isolates are pathogenic and antibiotic resistant.

Keywords

References

  1. Aureli, P., Ferrini, A. M., Mannoni, V., Hodzic, D., Wedell-Weergaard, C., and Oliva, B. (2002) Susceptibility of Listeria monocytogenes isolated from food in Italy to antibiotics. Int. J. Food Microbiol. 83, 325-330.
  2. Baek, S. Y., Lim, S. Y., Lee, D. H., Min, K. H., and Kim, C. M. (2000) Incidence and characterization of Listeria monocytogenes from domestic and imported foods in Korea. J. Food Prot. 63, 186-189. https://doi.org/10.4315/0362-028X-63.2.186
  3. Boscher, E., Houard, E., and Denis, M. (2012) Prevalence and distribution of Listeria monocytogenes serotypes and pulsotypes in sows and fattening pigs in farrow-to-finish farms (France, 2008). J. Food Prot. 72, 889-895.
  4. Burall, L. S., Simpson, A. C., and Datta, A. R. (2011) Evaluation of a serotyping scheme using a combination of an antibody-based serogrouping method and a multiplex PCR assay for identifying the major serotypes of Listeria monocytogenes. J. Food Prot. 74, 403-409. https://doi.org/10.4315/0362-028X.JFP-10-355
  5. CIDRP (Center for Infectious Disease Research and Policy). (2011) Listeriosis. Available from: http://www.cidrap.umn.edu/cidrap/content/fs/food-disease/causes/listerioview.html. Accesed Aug 4, 2016.
  6. CLSI (Clinical Laboratory Standards Institute). (2014). M100-S24. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement.
  7. Denny, J. and McLauchlin, J. (2008) Human Listeria monocytogenes infections in Europe-an opportunity for improved European surveillance. Euro. Surveill. 13, 80-82.
  8. Doumith, M., Bucherieser, C., Glaser, P., Jaquet, C., and Martin, P. (2004) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 42, 3819-3822. https://doi.org/10.1128/JCM.42.8.3819-3822.2004
  9. EFSA (European Food Safety Authority). (2011) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA J. 9, 2090. https://doi.org/10.2903/j.efsa.2011.2090
  10. Fenlon, D. R., Wison, J., and Donachie, W. (1996) The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing. J. Appl. Microbiol. 81, 641-650. https://doi.org/10.1111/j.1365-2672.1996.tb01966.x
  11. Fox, E., O'Mahony, T., Clancy, M., Dempsey, R., O'Brien, M., and Jordan, K. (2009) Listeria monocytogenes in the Irish dairy farm environment. J. Food Prot. 72, 1450-1456. https://doi.org/10.4315/0362-028X-72.7.1450
  12. Gianfranceschi, M., Fransiosa, G., Gattuso, A., and Aureli, P. (1998) Detection of two phospholipases C by means of plate tests for the rapid identification of pathogenic Listeria monocytogenes. Archiv für Lebensmittelhygien 49, 54-57.
  13. Graves, L. M. and Swaminathan, B. (2001) PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int. J. Food Microbiol. 65, 55-62. https://doi.org/10.1016/S0168-1605(00)00501-8
  14. Ho, A. J., Lappi, V. R., and Wiedmann, M. (2007) Longitudinal monitoring of Listeria monocytogenes contamination patterns in a farmstead dairy processing facility. J. Dairy Sci. 90, 2517-2524. https://doi.org/10.3168/jds.2006-392
  15. Huang, Y. T., Ko, W. C., Chan, Y. J., Lu, J. J., Tsai, H. Y., Liao, C. H., Sheng. W. H., Teng, L. J., and Hsueh, P. R. (2015) Disease burden of invasive listeriosis and molecular characterization of clinical isolates in Taiwan, 2000-2013. PLoS One 10, e0141241. doi:10.1371/journal.pone.0141241
  16. Jamali, H., Radmehr, B., and Thong, K. L. (2013) Prevalence, characterisation, and antimicrobial resistance of Listeria species and Listeria monocytogenes isolates from raw milk in farm bulk tanks. Food Control 34, 121-125. https://doi.org/10.1016/j.foodcont.2013.04.023
  17. Kang, H. J., Kim, J. S., Suk, J. M., Lee, S. M., and Son, W. G. (1998) Prevalence of Salmonella spp., Escherichia coli O157: H7 and Listeria monocytogenes in fresh feces and in drinking water of feedlots. Kor. J. Vet. Publ. Hlth. 22, 195-200.
  18. Kathariou, S. (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 65, 1811-1829. https://doi.org/10.4315/0362-028X-65.11.1811
  19. Khelef, N., Lecuit, M., Bierne, H., and Cossart, P. (2006) Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol. 8, 457-470. https://doi.org/10.1111/j.1462-5822.2005.00634.x
  20. Lane, D. J. (1991) 16S/23S rRNA sequencing. In Stackebrandt, E., Goodfellow, M. (Ed.) Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, 115-175.
  21. Locatelli, A., Depret, G., Joliver, C., Henry, S., Dequiedt, S. Piveteau, P., and Hartmann, A. (2013) Nation-wide study of the occurrence of Listeria monocytogenes in French soils using culture-based and molecular detection methods. J. Microbiol. Method. 93, 242-250. https://doi.org/10.1016/j.mimet.2013.03.017
  22. Megumi, H., Eriko, I., Shiori, Y., Masatake, M., Ikuo, T., and Katsuya, H. (2014) Prevalence and characteristics of Listeria monocytogenes in feces of black beef cattle reared in three geographically distant area in Japan. Foodborne Pathog. Dis. 11, 96-103. https://doi.org/10.1089/fpd.2013.1616
  23. Ministry of Food and Drug Safety (MFDS). (2015) Processing standards and ingredient specifications for livestock products. Available at: http://www.mfds.go.kr/eng/eng/index.do?nMenuCode=120&page=1&mode=view&boardSeq=70016. Accessed 1 September 2016.
  24. Nadon, C. A., Woodward, D. L., Young, C., Rodgers, F. G., and Weidmann, M. (2001) Correlations between molecular subtyping and serotyping of Listeria monocytogenes. J. Clin. Microbiol. 39, 2704-2707. https://doi.org/10.1128/JCM.39.7.2704-2707.2001
  25. Oliver, S. P., Jayarao, B. M., and Almeida, R. A. (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2, 115-129. https://doi.org/10.1089/fpd.2005.2.115
  26. Rahimi, E., Ameri, M., and Momtaz, H. (2010) Prevalence and antimicrobial resistance of Listeria species isolated from milk and dairy products in Iran. Food Control 21, 1448-1452. https://doi.org/10.1016/j.foodcont.2010.03.014
  27. Riedo, F. X., Weaver, R. E., Plikaytis, B. D., and Broome, C. V. (1994) A point-source foodborne listeriosis outbreak: documented incubation period and possible mild illness. J. Infect. Dis. 170, 693-696. https://doi.org/10.1093/infdis/170.3.693
  28. Schoder, D., Melzner, D., Schmalwieser, A., Zangana, A., Winter, P., and Wagner, M. (2011) Important vectors for Listeria monocytogenes transmission at farm dairies manufacturing fresh sheep and goat cheese from raw milk. J. Food Prot. 74, 919-924. https://doi.org/10.4315/0362-028X.JFP-10-534
  29. Swaminathan, B. and Gerner-Smidt, P. (2007) The epidemiology of human listeriosis. Microbes Infect. 9, 1236-1243. https://doi.org/10.1016/j.micinf.2007.05.011
  30. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebe, W., Gonzeguez-Ber, B., Wehland, J., and Kreft, J. (2001) Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584-640. https://doi.org/10.1128/CMR.14.3.584-640.2001
  31. Vela, A. I., Fernandez-Garayzabal, J. F., Latre, M. V., Rodriguez, A. A., Dominguez, L., and Moreno, M. A. (2001) Antimicrobial susceptibility of Listeria monocytogenes isolated from meningoencephalitis in sheep. Int. J. Antimicrob. Agents 17, 215-220. https://doi.org/10.1016/S0924-8579(00)00318-6
  32. Walsh, D., Duffy, G., Sheridan, J. J., Blair, I. S., and McDowell, D. A. (2001) Antibiotic resistance among Listeria, including Listeria monocytogenes, in retail foods. J. Appl. Microbiol. 90, 517-522. https://doi.org/10.1046/j.1365-2672.2001.01273.x
  33. Watkins, J. and Sleath, K. P. (1981) Isolation and enumeration of Listeria monocytogenes from sewage, sewage sludge and river water. J. Appl. Bacteriol. 50, 1-9. https://doi.org/10.1111/j.1365-2672.1981.tb00865.x
  34. Weidmann, M., Bruce, J., Korr, R., Bodis, E., Cole, C., McDowell, P., McDonouth, P., and Batt, C. (1996) Ribotype diversity of Listeria monocytogenes strains associated with outbreaks of listeriosis in ruminants. J. Clin. Microbiol. 34, 1086-1090.
  35. Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. (1991) 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  36. Winters, D. K., Maloney, T. P., and Johnson, M. G. (1999) Rapid detection of Listeria monocytogenes by a PCR assay specific for an amino peptidase. Mol. Cell. Probes 13, 127-131. https://doi.org/10.1006/mcpr.1999.0224
  37. Yi, C. H., Son, W. G., and Kang H. J. (2000) Prevalence and antibiotic-resistance of Listeria monocytogenes from sewage of livestock farms and product processing plants. Kor. J. Vet. Publ. Hlth. 24, 9-15.
  38. Yong, S. J., Joseph, F., Frank, R., Brackett, E., and Jinru, C. (2003) Polymerase chain reaction detection of Listeria monocytogenes on frankfurters using oligonucleotide primers targeting the genes encoding internalin AB. J. Food Prot. 66, 237-241. https://doi.org/10.4315/0362-028X-66.2.237
  39. Zhang, Y., Yeh, E., Hall, G., Cripe, J., Bhagwat, A. A., and Meng, J. (2007) Characterization of Listeria monocytogenes isolated from retail foods. Int. J. Food Microbiol. 113, 47-53. https://doi.org/10.1016/j.ijfoodmicro.2006.07.010

Cited by

  1. Antimicrobial Effect of Phytochemicals to Listeria monocytogenes Isolated from Slaughterhouses vol.33, pp.4, 2018, https://doi.org/10.13103/JFHS.2018.33.4.255
  2. Autochthonous Enterococcus durans PFMI565 and Lactococcus lactis subsp. lactis BGBU1-4 in Bio-Control of Listeria monocytogenes in Ultrafiltered Cheese vol.10, pp.7, 2016, https://doi.org/10.3390/foods10071448