DOI QR코드

DOI QR Code

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Received : 2016.08.16
  • Accepted : 2016.10.17
  • Published : 2016.12.31

Abstract

Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Keywords

References

  1. J. Q. Tang, B. Liu, J. C. Fang, and S. S. Ge, J. Vib. Control 19, 1962 (2013). https://doi.org/10.1177/1077546312449643
  2. Y. Ren and J. C. Fang. Math. Probl. Eng. 2014, 1 (2014).
  3. X. C. Chen, Y. Ren, and J. C. Fang, J. Mech. Eng. Sci. 228, 2303 (2014). https://doi.org/10.1177/0954406213517871
  4. Y. Ren and J. C. Fang, IEEE Trans. Ind. Electron. 61, 1539 (2014). https://doi.org/10.1109/TIE.2013.2257147
  5. C. J. Xin, Y. W. Cai, Y. Ren, and Y. H. Fan, J. Magn. 21, 356 (2016). https://doi.org/10.4283/JMAG.2016.21.3.356
  6. Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, and H. Kameno, J. Mechatronics 19, 1261 (2009). https://doi.org/10.1016/j.mechatronics.2009.08.002
  7. Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, and H. Kameno, J. Sys. Design Dyna. 3, 954 (2009). https://doi.org/10.1299/jsdd.3.954
  8. J. F. Shortle and M. B. Mendel, Probabilist Eng. Mech. 11, 31 (1996). https://doi.org/10.1016/0266-8920(95)00025-9
  9. C. J. Xin, Y. W. Cai, and Y. Ren, J. Mech. Eng. Sci. doi: 10.1177/0954406216629503(2016).
  10. Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, H. Kameno, and A. Kubo, IEEE Trans Ind Electron. 61, 1911 (2009).
  11. H. Raoul, B. Philipp, and G. Conrad. IEEE Trans Control Syst. and Technol. 4, 580 (1996). https://doi.org/10.1109/87.531924
  12. S. Jue, R. Zmood, and L. Qin. Control Eng. Pract. 12, 283 (2004). https://doi.org/10.1016/S0967-0661(03)00095-9
  13. A. Tomohiro, T. Mizuno, T. Masaya, and Y. Ishino, J. Jpn. Soc. Appl. Electromagn. Mech. 22, 220 (2014). https://doi.org/10.14243/jsaem.22.220
  14. T. Mizuno, A. Tomohiro, T. Masaya, and Y. Ishino, IEEE/ASME Trans Mechatronics 21, 1151 (2016). https://doi.org/10.1109/TMECH.2015.2497261
  15. T. Schuhmann, W. Hofmann, and R. Werner, IEEE Trans Ind. Electron. 59, 821 (2012). https://doi.org/10.1109/TIE.2011.2161056
  16. Y. H. Fan, J. Y. Chen, D. L. Weng, and Y. T. Lee, J. Appl. Phys. 103, 103 (2008).
  17. M. Queiroz, J. Vib. Control. 15, 1365 (2009). https://doi.org/10.1177/1077546308096103
  18. P. L. Cui, J. X. He, J. C. Fang, X. B. Xu, J. Cui, and S. Yang, J. Vib. Control. doi: 10.1177/1077546315576430 (2015).

Cited by

  1. Attitude-Rate Measurement and Control Integration Using Magnetically Suspended Control and Sensitive Gyroscopes vol.65, pp.6, 2018, https://doi.org/10.1109/TIE.2017.2772161
  2. Stability analysis for a rotor system in a magnetically suspended control and sensitive gyroscope with the Lorentz force magnetic bearing rotation pp.2041-3041, 2018, https://doi.org/10.1177/0959651818800913