DOI QR코드

DOI QR Code

Dairy wastewater treatment using microalgae for potential biodiesel application

  • Choi, Hee-Jeong (Department of Energy and Environment Convergence, Catholic Kwandong University)
  • Received : 2015.12.21
  • Accepted : 2016.07.25
  • Published : 2016.12.30

Abstract

The aim of this study was to evaluate the biomass production and dairy wastewater treatment using Chlorella vulgaris. The results indicated that the maximum percentages of biochemical oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus removed were 85.61%, 80.62%, 29.10%, 85.47%, and 65.96%, respectively, in dairy effluent at 10 d. A maximum of 1.23 g/L dry biomass was obtained in 7 d. The biomass productivity was strongly influenced by the nutrient reduction in the dairy effluent. The biodiesel produced by the C. vulgaris in the dairy effluent was in good agreement with the American Society of Testing and Materials-D6751 and European Standards 14214 standards. Therefore, using dairy effluent for microalgal cultures could be a useful and practical strategy for an advanced, environmentally friendly treatment process.

Keywords

References

  1. Bulletin of IDF NO. 481/2015 - The World Dairy Situation 2015, by the International Dairy Federation, Brussels, Belgium, 2015.
  2. IDF Korea (www.idfkorea.or.kr)
  3. Rad SJ, Lewis MJ. Water utilization, energy utilization and waste water man-agreement in the dairy industry: A review. Int. J. Dairy Technol. 2014;67:1-20. https://doi.org/10.1111/1471-0307.12096
  4. Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V. Wastewater treatment in dairy industries - possibility of reuse. Desalination 2006;195:141-52. https://doi.org/10.1016/j.desal.2005.11.015
  5. Karadag D, Koroglu OE, Ozkaya B, Cakmakci M. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem. 2015;50:262-271. https://doi.org/10.1016/j.procbio.2014.11.005
  6. Goblos S, Portoro P, Bordas D, Kalman M, Kiss I. Comparison of the effectivities of two-phase and single-phase anaerobic sequencing batch reactors during dairy wastewater treatment. Renew. Energy 2008;33:960-965. https://doi.org/10.1016/j.renene.2007.06.006
  7. Amini M, Younesi H, Lorestani AAZ, Najafpour GD. Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients. Bioresour. Technol. 2013;145:71-79. https://doi.org/10.1016/j.biortech.2013.01.111
  8. Guven G, Perendeci A, Tanyolac A. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology. J. Hazard. Mater. 2008;57:69-78.
  9. Andrade LH, Mendes FDS, Espindola JC, Amaral MCS. Nano filtration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Sep. Purif. Technol. 2014;126: 21-29. https://doi.org/10.1016/j.seppur.2014.01.056
  10. Demirel B, Yenigun O, Onay TT. Anaerobic treatment of dairy wastewaters: A review. Process Biochem. 2005;40:2583-95. https://doi.org/10.1016/j.procbio.2004.12.015
  11. Kushwaha JP, Srivastava VC, Mall ID. An overview of various technologies for the treatment of dairy wastewaters. Crit. Rev. Food Sci. Nutr. 2011;51:442-52. https://doi.org/10.1080/10408391003663879
  12. Kumar S, Gupta N, Pakshirajan K. Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J. Environ. Chem. Eng. 2015;3:1630-1636. https://doi.org/10.1016/j.jece.2015.05.030
  13. Hena S, Fatimah S, Tabassum S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour. Industry 20115;10:1-14. https://doi.org/10.1016/j.wri.2015.02.002
  14. Kothari R, Prasad R, Kumar V, Singh DP. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour. Technol. 2013;144:499-503. https://doi.org/10.1016/j.biortech.2013.06.116
  15. Kothari R, Pathak VV, Kumar V, Kumar V, Singh DP. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy wastewater; an intergrated approach for treatment and biofuel production. Bioresour. Technol. 2012;116:466-470. https://doi.org/10.1016/j.biortech.2012.03.121
  16. Lu W, Wang Z, Wang X, Yuan Z. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresour. Technol. 2015;192:382-388. https://doi.org/10.1016/j.biortech.2015.05.094
  17. Geider RJ, Roche JL. Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 2002;37:1-17. https://doi.org/10.1017/S0967026201003456
  18. Choi HJ, Lee SM. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Biopro. Biosys. Eng. 2015;38:761-766. https://doi.org/10.1007/s00449-014-1317-z
  19. Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour. Technol. 2012;118:61-66. https://doi.org/10.1016/j.biortech.2012.05.055
  20. Choi HJ, Lee JM, Lee SM. A novel optical panel photobioreactor for cultivation of microalgae. Water Sci. Technol. 2013;67:2543-2548. https://doi.org/10.2166/wst.2013.128
  21. Choi HJ, Yu SW. Influence of crude glycerol on the biomass and lipid content of microalgae. Biotechnol. Biotechnol. Equip. 2015;29:506-513. https://doi.org/10.1080/13102818.2015.1013988
  22. APHA. Standard methods for the examination of water and wastewater. 22nd ed. Washington D.C.: American Public Health Association; 2012.
  23. Huo SH, Wang ZM, Zhu SN, Zhou WZ, Dong RJ, Yuan ZH. Cultivation of Chlorella zofingiensis in bench scale outdoor ponds by regulation of pH using dairy wastewater in winter, Sourth China. Bioresour. Technol. 2012;121:76-82. https://doi.org/10.1016/j.biortech.2012.07.012
  24. Seo YH, Lee I, Jeon SH, Han JI. Efficient conversion from cheese whey to lipid using Cryptococcus curvatus. Biochem. Eng. J. 2014;90:149-153. https://doi.org/10.1016/j.bej.2014.05.018
  25. Choi HJ, Lee SM. Effect of optical panel thickness for nutrient removal and cultivation of microalgae in the photobioreactor. Biopro. Biosys. Eng. 2014;37:697-705. https://doi.org/10.1007/s00449-013-1039-7
  26. Choi HJ. Effect of optical panel distance in a photobioreactor for nutrient removal and cultivation of microalgae. World J. Microbiol. Biotechnol. 2014;30:2015-2023. https://doi.org/10.1007/s11274-014-1626-z
  27. Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour. Technol. 2015;184:179-189. https://doi.org/10.1016/j.biortech.2014.11.080
  28. Devi MP, Subhash GV, Mohan SV. Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: Effect of nutrient supplementation. Renew. Energy 2012;43:276-283. https://doi.org/10.1016/j.renene.2011.11.021
  29. Gupta PL, Lee SM, Choi HJ. A mini review: Photobioreactor for large scale algal cultivation. World J. Microbiol. Biotechnol. 2015;31:1409-1417. https://doi.org/10.1007/s11274-015-1892-4
  30. Ding JF, Zhao FM, Cao YF, et al. Cultivation of microalgae in dairy wastewater without sterilization. Int. J. Phytoremediation 2014;17:222-227.
  31. Aslan S, Kapdan IK. Batch kinetic of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006;28:64-70. https://doi.org/10.1016/j.ecoleng.2006.04.003
  32. Rana AA. A study on the effect of temperature on the treatment of industrial wastewater using Chlorella vulgaris alga. J. Eng. Technol. 2010;28:785-791.
  33. Hoffman JP. Wastewater treatment with suspended and non suspended algae. J. Phycol. 1998;34:757-763. https://doi.org/10.1046/j.1529-8817.1998.340757.x
  34. Wood A, Scheepers J, Hills M. Combined artificial wetland and high rate algal pond for wastewater treatment and protein production. Water Sci. Technol. 1989;21:659-668. https://doi.org/10.2166/wst.1989.0268
  35. Buntner D, Sanchez A, Garrido JM. Feasibility of combined UASB and MBR system in dairy wastewater treatment at ambient temperature. Chem. Eng. J. 2013;230:475-481. https://doi.org/10.1016/j.cej.2013.06.043
  36. Banu JR, Anandan S, Kaliappan S, Yeom IT. Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Sol. Energy 2008;82:812-819. https://doi.org/10.1016/j.solener.2008.02.015
  37. Rodgers M, Zhan XM, Dolan B. Mixing characteristics and whey wastewater treatment of a novel moving anaerobic biofilm reactor. J. Environ. Sci. Health 2004;39:2183-2193. https://doi.org/10.1081/ESE-120039383
  38. Bezerra RA, Rodrigues JAD, Ratusznei SM, Zaiat M, Foresti E. Whey treatment by AnSBBR wuth circulation: Effects of organic loading, shock loads, and alkalinity supplementation. Appl. Biochem. Biotechnol. 2007;143:257-275. https://doi.org/10.1007/s12010-007-8030-1
  39. Ramasamy EV, Abbasi SA. Energy recovery from dairy waste-waters: Impacts of biofilm support systems on anaerobic CST reactors. Appl. Energy 2000;65:91-98. https://doi.org/10.1016/S0306-2619(99)00079-3
  40. Choi HJ. Effect of Mg-Sericite flocculant for treatment of brewery wastewater. Appl. Caly Sci. 2015;115:145-149. https://doi.org/10.1016/j.clay.2015.07.037
  41. Wang L, Li YC, Chen P, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010;101:2623-2628. https://doi.org/10.1016/j.biortech.2009.10.062

Cited by

  1. Advances in microalgal biomass/bioenergy production with agricultural by-products: Analysis with various growth rate models vol.24, pp.2, 2018, https://doi.org/10.4491/eer.2018.193
  2. Comprehensive evaluation of microalgal based dairy effluent treatment process for clean water generation and other value added products pp.1549-7879, 2019, https://doi.org/10.1080/15226514.2018.1537248
  3. Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry vol.8, pp.11, 2020, https://doi.org/10.3390/pr8111458
  4. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production vol.286, pp.None, 2021, https://doi.org/10.1016/j.jenvman.2021.112196
  5. Potential of Microalgae in Bioremediation of Wastewater vol.16, pp.2, 2016, https://doi.org/10.9767/bcrec.16.2.10616.413-429
  6. Food Industries Wastewater Recycling for Biodiesel Production through Microalgal Remediation vol.13, pp.15, 2021, https://doi.org/10.3390/su13158267
  7. Microalgal Production of Biofuels Integrated with Wastewater Treatment vol.13, pp.16, 2016, https://doi.org/10.3390/su13168797
  8. Phycoremediation and valorization of synthetic dairy wastewater using microalgal consortia of Chlorella variabilis and Scenedesmus obliquus vol.42, pp.20, 2021, https://doi.org/10.1080/09593330.2020.1725143
  9. An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation vol.297, pp.None, 2016, https://doi.org/10.1016/j.jenvman.2021.113210
  10. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts vol.806, pp.p2, 2016, https://doi.org/10.1016/j.scitotenv.2021.150585