DOI QR코드

DOI QR Code

Deformation monitoring of Daejeon City using ALOS-1 PALSAR - Comparing the results by PSInSAR and SqueeSAR -

ALOS-1 PALSAR 영상을 이용한 대전지역 변위 관측 - PSInSAR와 SqueeSAR 분석 결과 비교 -

  • Kim, Sang-Wan (Department of Energy and Mineral Resources Engineering, Sejong University)
  • 김상완 (세종대학교 에너지자원공학과)
  • Received : 2016.12.21
  • Accepted : 2016.12.26
  • Published : 2016.12.31

Abstract

SqueeSAR is a new technique to combine Persistent Scatterer (PS) and Distributed Scatterer (DS) for deformation monitoring. Although many PSs are available in urban areas, SqueeSAR analysis can be beneficial to increase the PS density in not only natural targets but also smooth surfaces in urban environment. The height of each targets is generally required to remove topographic phase in interferometric SAR processing. The result of PSInSAR analysis to use PS only is not affected by DEM resolution because the height error of initial input DEM at each PSs is precisely compensated in PS processing chain. On the contrary, SqueeSAR can be affected by DEM resolution and precision since it includes spatial average filtering for DS targets to increase a signal-to-noise ratio (SNR). In this study we observe the effect of DEM resolution on deformation measurement by PSInSAR and SqueeSAR. With ALOS-1 PALSAR L-band data, acquired over Daejeon city, Korea, two different DEM data are used in InSAR processing for comparison: 1 m LIDAR DEM and SRTM 1-arc (~30 m) DEM. As expected the results of PSInSAR analysis show almost same results independently of the kind of DEM, while the results of SqueeSAR analysis show the improvement in quality of the time-series in case of 1-m LIDAR DSM. The density of InSAR measurement points was also improved about five times more than the PSInSAR analysis.

SqueeSAR 분석기법은 SAR 영상내에 있는 고정산란체(PS)와 분산산란체(DS)를 모두 이용하는 새로운 기법이다. 비록 도심지역에는 많은 PS가 존재하지만, SqueeSAR 기법은 관측밀도를 높이는데 기여할 수 있다. 차분간섭도 제작에 필요한 DEM 정확도에 의한 변위분석 결과의 영향을 분석하기 위해 SRTM 1-arc (~30 m)와 1 m LIDAR DEM을 사용한 분석을 수행하였다. 두개의 고도자료를 이용하여 PSInSAR와 SqueeSAR 분석을 수행한 결과 인공구조물과 같은 PS에서는 자료처리에 사용된 DEM 오차를 거의 정확하게 보정할 수 있기 때문에, 사용된 DEM의 정확도와 상관없이 최종 시계열 분석 결과는 동일하였다. 반면, 고정산란체가 아닌 Distributed Scatterer (DS)일 경우 사용된 DEM의 정확도에 따라 영향을 받게 되며, SqueeSAR의 경우 사용된 DEM이 정확할수록 분석 결과가 좋아짐을 확인하였다. 도심지역에서의 변위 관측에서도 SqueeSAR 기법이 PSInSAR 기법에 비해 약 5배 이상의 관측점을 추출하는데 기여했으며, 관측점의 오차도 PSInSAR 결과에 비해 현저하게 개선되었다.

Keywords

References

  1. ASF News & Notes, 2015. 2013 Summer, Southwest Sinkholes, Alaska Satellite Facility.
  2. Bonano, M. M. Manunta, A. Pepe, L. Paglia, and R. Lanari, 2013. From Previous C-Band to New XBand SAR Systems: Assessment of the DInSAR Mapping Improvement for Deformation Time-Series Retrieval in Urban Areas, IEEE Transactions on Geoscience and Remote Sensing, 51(4): 1973-1984. https://doi.org/10.1109/TGRS.2012.2232933
  3. Colesanti, C., A. Ferretti, C. Prati, and F. Rocca, 2003. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, 68(1-2): 3-14. http://doi:10.1016/S0013-7952(02)00195-3
  4. Colesanti, C. and J. Wasowski, 2006. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering Geology, 88(3-4): 173-199. http://doi.org/10.1016/j.enggeo.2006.09.013
  5. Ferretti, A., C. Prati, and F. Rocca, 2000. Nonlinear subsidence rate esti- mation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212. https://doi.org/10.1109/36.868878
  6. Ferretti, A., C. Prati, and F. Rocca, 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20. https://doi.org/10.1109/36.898661
  7. Ferretti, A., A. Fumagalli, F. Novali, and C. Prati, 2011. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3460-3470. http://DOI:10.1080/19475683.2010. 492126
  8. Fornaro, G., A. Pauciullo, D. Reale., and S, Verde, 2014. Multilook SAR Tomography for 3-D Reconstruction and Monitoring of Single Structures Applied to COSMO-SKYMED Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7): 2776-2785. https://doi.org/10.1109/JSTARS.2014.2316323
  9. Gernhardt, S., N. Adam, M. Eineder, and R. Bamler, 2010. Potential of very high resolution SAR for persistent scatterer interferometry in urban areas. Annals of GIS, 16(2): 103-111. https://doi.org/10.1080/19475683.2010.492126
  10. Jones, C. E. and R. G. Blom, 2014. Bayou Corne, Louisiana, sinkhole: Precursory deformation measured by radar interferometry. Geology, 42(2): 111-114. http://doi.org/10.1130/G34972.1
  11. Nof, R. N., G. Baer, A. Ziv, E. Raz, S. Atzori, and S. Salvi, 2013. Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry. Geology, 41(9): 1019-1022. http://doi.org/10.1130/G34505.1
  12. Reale D., G. Fornaro, A. Pauciullo, X. Zhu, and R. Bamler, 2011. Tomographic Imaging and Monitoring of Buildings With Very High Resolution SAR Data, IEEE Transactions on Geoscience and Remote Sensing Letter, 8(4) : 661-665. https://doi.org/10.1109/LGRS.2010.2098845
  13. Werner, C., U. Wegmuller, T. Strozzi, and A. Wiesmann, 2000. GAMMA SAR and interferometric processing software, Proc. of the ERS-Envisat symposium, gothenburg, Swenden, 1620.