DOI QR코드

DOI QR Code

Two-step Acid Hydrolysis Method for Producing Fermentable Sugar from Lignocellulosic Biomass

발효당 생산을 위한 목질계 바이오매스의 2단 산당화

  • Park, Jang Han (Department of Chemical Engineering, Kyonggi University) ;
  • Kim, Jun Seok (Department of Chemical Engineering, Kyonggi University)
  • Received : 2015.05.22
  • Accepted : 2015.06.24
  • Published : 2016.02.01

Abstract

For obtain fermentable sugar, we conducted acid hydrolysis with lignocellulosic biomass without enzyme. The lignocellulosic biomass used pinus rigida and Palm residues (EFB; empty fruit bunches). In the acid hydrolysis, we consider the hydrolysis condition to reduce a denatured sugar. So this study was conducted 2-step acid hydrolysis. First-step hydrolysis used high concentration (72 wt%) sulfuric acid at $80^{\circ}C$. At the condition, we obtained 11.49 wt%, 32 wt% glucose conversion for pinus rigida and EFB. After the step, the liquor was dilute until 9~15 wt% acid concentration and conducted second hydrolysis at $50{\sim}120^{\circ}C$. In the second hydrolysis, we obtained maximum glucose conversion (pinus rigida 86.8 wt% (39 g/L) and EFB 95.3 wt% (32.4 g/L)) at 9 wt% acid concentration and $120^{\circ}C$ for 80 min. All samples through the process are analyzed on the basis of mass balance.

목질계 바이오매스를 이용하여 효소를 사용하지 않고 발효당을 얻기 위해 황산을 이용한 당화를 수행하였다. 바이오매스로는 pinus rigida와 palm농업 부산물인 EFB를 사용하였다. 산을 이용한 당화에서는 당의 과분해 생성물을 줄이기 위한 당화조건을 생각해 보아야 한다. 따라서 본 연구에서는 목질계 바이오매스를 이용한 2단 산당화를 수행하였다. 산을 이용한 1차 가수분해에서는 72 wt%의 황산을 이용하여 $80^{\circ}C$에서 반응시켰을 경우 가장 높은 당화율을 보였고 pinus rigida와 EFB 각각 11.49 wt%, 32 wt%의 당화율을 보였다. 이후 1차 가수분해에서 얻은 액상을 9~15 wt%의 산농도가 되도록 묽혀 $50{\sim}120^{\circ}C$의 온도로 2차 가수분해를 진행했다. 2차 가수분해시 9%의 황산농도와 $120^{\circ}C$의 온도조건에서 80분간 반응시켰을 때 최종 글루코오스 당화율은 pinus rigida의 경우 86.8 wt.% (39 g/L), EFB의 경우 95.3 wt%(32.4 g/L)를 얻을 수 있었다. 각 단계에서 분석된 결과는 물질수지를 통해 확인하고 당화 효율을 비교해 보았다.

Keywords

References

  1. Limayem, A. and Steven, C. R., "Lignocellulosic Biomass for Bioethanol Production: Current Perspectives, Potential Issues and Future Prospects," Progress in Energy and Combustion Science, 38, 449-467(2012). https://doi.org/10.1016/j.pecs.2012.03.002
  2. Kumar, P., Barrett, D. M. and Delwiche, M. J., "Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production," Industrial & Engineering Chemistry Research, 48, 3713-3729(2009). https://doi.org/10.1021/ie801542g
  3. Singh, A., Pant, D., Korres, N. E., Nizami, A. S., Prasad, S. and Murphy, J. D., "Key Issues in Life Cycle Assessment of Ethanol Production from Lignocellulosic Biomass: Challenges and Perspectives," Bioresource Technology, 101, 5003-5012(2010). https://doi.org/10.1016/j.biortech.2009.11.062
  4. Kim, K. S. and Kim, J. S., "Optimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48, 704-711(2010).
  5. Naik, S. N., Goud, V. V., Rout, P. K. and Dalai, A. K., "Production of First and Second Generation Biofuels: a Comprehensive Review," Renewable and Sustainable Energy Reviews, 14, 578-597(2010). https://doi.org/10.1016/j.rser.2009.10.003
  6. Zhao, X., Cheng, K. and Liu, D., "Organosolv Pretreatment of Lignocellulosic Biomass for Enzymatic Hydrolysis," Applied Microbiology and Biotechnology, 82, 815-827(2009). https://doi.org/10.1007/s00253-009-1883-1
  7. Kim, Y. J., Park, Y. S., Kim, N. R., Gu, J. H., Chae, J. O., Nam, S. I. and Choi, J. H., "Effect of Operation Variables on Char Yield and Characteristics During EFB (empty fruit bunch) Torrefaction," Journal of Korea Society of Waste Management, 29, 122-122(2012).
  8. Yoon, H. H., "Pretreatment of Lignocellulosic Biomass by Autohydrolysis and Aqueous Ammonia Percolation," Korean Journal of Chemical Engineering, 15, 631-636(1998). https://doi.org/10.1007/BF02698990
  9. Lee, J. W., "Biological Conversion of Lignocellulosic Biomass to Ethanol," Journal of biotechnology, 56, 1-24(1997). https://doi.org/10.1016/S0168-1656(97)00073-4
  10. Taherzadeh, M. J. and Karimi, K., "Acid-based Hydrolysis Processes for Ethanol from Lignocellulosic Materials: a Review," BioResources, 2, 472-499(2007).
  11. Kim, H. Y., Lee, E. S., Kim, W. S., Suh, D. J. and Ahn, B. S., "Material and Heat Balances of Bioethanol Production Process by Concentrated Acid Saccharification Process from Lignocellulosic Biomass," Clean Technology, 17, 156-165(2011).
  12. Pessoa, A. Jr., Mancilha, I. M. and Sato, S., "Acid Hydrolysis of Hemicellulose from Sugarcane Bagasse," Brazilian Journal of Chemical Engineering, 14, (1997).
  13. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures, http://www.nrel.gov/biomass/analytical_procedures.html.

Cited by

  1. A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture pp.1975-7220, 2017, https://doi.org/10.1007/s11814-017-0214-y
  2. 에탄올 유기용매 전처리를 이용한 옥수수대의 효소당화 vol.54, pp.4, 2016, https://doi.org/10.9713/kcer.2016.54.4.448
  3. 황산/글루코스 용액으로부터 전기투석에 의한 황산 분리 vol.55, pp.1, 2016, https://doi.org/10.9713/kcer.2017.55.1.7
  4. 탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화 vol.56, pp.2, 2016, https://doi.org/10.9713/kcer.2018.56.2.229
  5. 유기인산계 추출제를 이용한 에멀젼형 액막법에 의해 푸란유도체를 함유하는 모사 바이오매스 가수분해액으로부터 초산의 분리 vol.56, pp.5, 2016, https://doi.org/10.9713/kcer.2018.56.5.687
  6. 폐비닐의 파쇄/선별 융합 전처리 공정의 경제성 평가 vol.25, pp.4, 2016, https://doi.org/10.7464/ksct.2019.25.4.287
  7. Process Development for the Detoxification of Fermentation Inhibitors from Acid Pretreated Microalgae Hydrolysate vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092435