DOI QR코드

DOI QR Code

Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material

CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성

  • Jung, Min zy (Department of Chemical Engineering, Chungbuk national Univ.) ;
  • Park, Ji Yong (Department of Chemical Engineering, Chungbuk national Univ.) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk national Univ.)
  • Received : 2015.07.07
  • Accepted : 2015.09.17
  • Published : 2016.02.01

Abstract

Silicon/Carbon/CNT composites as anode materials for lithium-ion batteries were synthesized to overcome the large volume change during lithium alloying-de alloying process and low electrical conductivity. Silicon/Carbon/CNT composites were prepared by the fabrication processes including the synthesis of SBA-15, magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling, carbonization of phenolic resin with CNT and HCl etching. The prepared Silicon/Carbon/CNT composites were analysed by XRD, SEM, BET and EDS. In this study, the electrochemical effect of CNT content to improve the capacity and cycle performance was investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using Silicon/Carbon/CNT composite (Si:CNT=93:7 in weight) in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%) has better capacity (1718 mAh/g) than those of other composition coin cells. The cycle performance of coin cell was improved as CNT content was increased. It is found that the coin cell (Si:CNT=89:11 in weight) has best capacity retension (83%) after 2nd cycle.

실리콘의 부피팽창과 낮은 전기전도도를 개선하기 위하여 Silicon/Carbon/CNT 복합체를 제조하였다. Silicon/Carbon/CNT 합성물은 SBA-15를 합성한 후, 마그네슘 열 환원 반응으로 Silicon/MgO를 제조하여 Phenolic resin과 CNT를 첨가하여 탄화하는 과정을 통해 합성하였다. 제조된 Silicon/Carbon/CNT 합성물은 XRD, SEM, BET, EDS를 통해 특성을 분석하였다. 본 연구에서는 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 CNT 첨가량에 따른 전기화학적 효과를 조사하였다. $LiPF_6$ (EC:DMC:EMC=1 :1 :1 vol%) 전해액에서 Silicon/Carbon/CNT 음극활물질을 사용하여 제조한 코인셀은 CNT 함량이 7 wt% 일 때 1,718 mAh/g으로 높은 용량을 나타내었다. 코인셀의 사이클 성능은 CNT 첨가량이 증가할수록 개선되었다. 11 wt%의 CNT를 첨가한 Silicon/Carbon/CNT 음극은 두 번째 사이클 이후 83%의 높은 용량 보존율을 나타냄을 알 수 있었다.

Keywords

References

  1. Ko, H. S., Choi, J. E. and Lee, J. D., "Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/$Li_4Ti_5O_{12}$ Composite," Korean Chemical Engineering Research, 52, 52-57 (2014). https://doi.org/10.9713/kcer.2014.52.1.52
  2. Jeon, B. J., Kang, S. W. and Lee, J. K., "Electrochemical Characteristics of Silicon Coated Graphite Prepared by Gas Suspension Spray Method for Anode Material of Lithium Secondary Batteries," The Korean Journal of Chemical Engineering, 23, 854-859(2006). https://doi.org/10.1007/BF02705940
  3. Pan, L. I., Wang, H., Gao, D., Chen, S., Tan, L. and Li, L., "Facile Synthesis of Yolk-Shell Structured Si-C Nanocomposites as Anode for Lithium-ion Batteries," The Royal Society of Chemistry, 50, 5878-5880(2014).
  4. Zhou, X. Y., Tang, J. J., Yang, J., Xie, J. and Ma, L. L., "Silicon @carbon Hollow Core-shell Heterostructures Novel Anode Materials for Lithium Ion Batteries," Electrochimica Acta, 87, 663-668(2013). https://doi.org/10.1016/j.electacta.2012.10.008
  5. Wen, Z., Lu, G., Mao, S., Kim, H., Cui, S., Yu, K., Huang, X., Hurley, P. T., Mao, O. and Chen, J., "Silicon Nanotube Anode for Lithium-ion Batteries," Electrochemistry Communications, 29, 67-70(2013). https://doi.org/10.1016/j.elecom.2013.01.015
  6. Yim, T., Choi, S. J., Jo, Y. N., Kim, T. H., Kim, K. J., Jeong, G. and Kim, Y. J., "Effect of Binder Properties on Electrochemical Performance for Silicon-graphite Anode : Method and Application of Binder Screening," Electrochimica Acta, 136, 112-120(2014). https://doi.org/10.1016/j.electacta.2014.05.062
  7. Li, H., Lu, C. and Zhang, B., "A Straight Approach Towards Si@C/Graphene Nanocomposite and Its Superior Lithium Storage Performance," Electrochimica Acta, 120, 96-101(2014). https://doi.org/10.1016/j.electacta.2013.12.048
  8. Liu, Y., Wen, Z. Y., Wang, X. Y., Hirano, A., Imanishi, N. and Takeda, Y., "Electrochemical Behaviors of Si/C Composite Sythesized from F-containing Precursors," Journal of Power Sources, 189, 733-737(2009). https://doi.org/10.1016/j.jpowsour.2008.08.016
  9. Cetinkaya, T., Guler, M. O. and Akbulut, H., "Enhancing Electrochemical Performance of Silicon Anodes by Dispersing MWCNTs Using Planetary Ball Milling," Microelectronic Engineering, 108, 169-176(2013). https://doi.org/10.1016/j.mee.2013.01.051
  10. Su, M., Wang, Z., Guo, H., Li, X., Huang, S. and Gan, L., "Silicon, Flake Graphite and Phenolic Resin-Pyrolyzed Carbon Based Si/C Composites as Anode Material for Lithium-ion Batteries," Advanced Power Technology, 24, 921-925(2013). https://doi.org/10.1016/j.apt.2013.01.002
  11. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D., "Triblock Copolymer Synthesis of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," American Associatin for the Advancement of Science, 279, 548(1998). https://doi.org/10.1126/science.279.5350.548
  12. Wang, Y., Zhang, F., Wang, Y., Ren, J., Li, C., Liu, X., Guo, Y., Guo, Y. and Lu, G., "Synthesis of Length Controllable Mesoporous SBA-15 Rods," Materials Chemistry and Physics, 115, 649-655(2009). https://doi.org/10.1016/j.matchemphys.2009.01.027
  13. Park, J. Y., Jung, M. Z. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites for Anode Material of Lithium Ion Battery," Applied Chemistry Engineering, 26, 80-85(2015). https://doi.org/10.14478/ace.2014.1119
  14. Li, H. H., Wang, J. W., Wu, X. L., Sun, H. Z., Yang, F. M., Wang, K., Zhang, L. L., Fan, C. Y. and Zhang, J.-P., "A Novel Approach to Prepare Si/C Nanocomposites with Yolk-shell Structures for Lithium Ion Batteries," The Royal Society of Chemistry, 4, 36218-36225(2014).

Cited by

  1. Treatment vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1053
  2. 구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성 vol.54, pp.4, 2016, https://doi.org/10.9713/kcer.2016.54.4.459
  3. 음극소재로 PFO에서 개질된 붕산처리 소프트 카본의 전기화학적 성능 vol.54, pp.6, 2016, https://doi.org/10.9713/kcer.2016.54.6.746
  4. 리튬이온전지용 화학적 활성화로 제조된 석유계 피치 음극소재의 전기화학적 특성 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.307
  5. 리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능 vol.56, pp.3, 2016, https://doi.org/10.9713/kcer.2018.56.3.320
  6. 석유계 피치를 사용한 실리콘/탄소 음극소재의 전기화학적 특성 vol.56, pp.4, 2016, https://doi.org/10.9713/kcer.2018.56.4.561