DOI QR코드

DOI QR Code

Structural Changes of PVDF Membranes by Phase Separation Control

상분리 조절에 의한 PVDF막의 구조 변화

  • Lee, Semin (Department of Chemical Engineering, Regional Innovation Center, Kyung Hee University) ;
  • Kim, Sung Soo (Department of Chemical Engineering, Regional Innovation Center, Kyung Hee University)
  • 이세민 (경희대학교 화학공학과, 경희대학교 지역혁신센터) ;
  • 김성수 (경희대학교 화학공학과, 경희대학교 지역혁신센터)
  • Received : 2015.05.10
  • Accepted : 2015.06.09
  • Published : 2016.02.01

Abstract

Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.

Polyvinylidene fluoride (PVDF) 평막 제조를 위하여 PVDF의 용매와 희석제로서 n-methyl-2-pyrrolidone (NMP)와 dibutyl-phthlate (DBP)를 각각 사용하여 열유도 상분리(thermally induced phase separation, TIPS)와 비용매유도 상분리(nonsolvent induced phase separation, NIPS)를 동시에 유도하였다. NMP와 DBP를 PVDF와 용융 혼합할 경우 TIPS 공정에서의 결정화 온도가 낮아졌고 NIPS 공정에서의 불안정 영역이 확대되었다. 용매와 희석제의 비율에 따라 상분리 메카니즘이 변화하였고 이에 따라 다양한 구조의 막이 형성됨을 확인하였다. 또한 dope 용액과 비용매의 접촉여부에 따라 지배적인 상분리 거동이 결정되었다. 열전달이 물질전달에 비하여 빠르게 이루어지므로 막의 표면은 NIPS에 의하여 지배를 받고 막의 내부는 TIPS에 의한 구조가 형성되었다. 또한 dope 용액의 급냉온도에 따라 상분리 메카니즘 및 상분리 속도가 변화하여 다양한 구조를 형성하였다.

Keywords

References

  1. Heo, C. H., Lee, K. M., Kim, J. H. and Kim, S. S., "Preparation of PVDF Membrane by Thermally-induced Phase Separation," Korean Membrane Journal, 9, 27-33(2007).
  2. Cui, Z., Drioli, E. and Lee, Y. M., "Recent Progress in Fluoropolymers for Membranes," Prog. Polym. Sci., 39, 164-198 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.008
  3. Oh, S .G. Lee, Y.-G., Kim, K. M., Lee, Y. M., Kim, S. H., Kim, Y. J. and Ko, J. M., "Separator Properties of Silk-woven Fabrics Coated with PVdF-HFP and Silica and the Charge-discharge Characteristics of Lithium-ion Batteries Adopting Them," Korean Chem. Eng. Res., 51, 330-334(2013). https://doi.org/10.9713/kcer.2013.51.3.330
  4. Witte, P., Dijkstra, P. J., Berg, J. W. A. and Feijen, J., "Phase separation Processes in Polymer Solutions in Relation to Membrane Formation," J. Membr. Sci., 117, 1-31(1996). https://doi.org/10.1016/0376-7388(96)00088-9
  5. Mansourizadeh, A., Ismail, A. F., Abdullah, M. S. and Ng, B. C., "Preparation of Polyvinylidene Fluoride Hollow Fiber Membranes for $CO_2$ Absorption Using Phase-inversion Promoter Additives," J. Membr. Sci., 355, 200-207(2010). https://doi.org/10.1016/j.memsci.2010.03.031
  6. Wang, D., Li, K. and Teo, W. K., "Preparation and Characterization of Polyvinylidene Fluoride (PVDF) Hollow Fiber Membranes," J. Membr. Sci., 163, 211-220(1999). https://doi.org/10.1016/S0376-7388(99)00181-7
  7. Lloyd, D. R., Kinzer, K. E. and Tseng, H. S., "Microporous Membrane Formation via Thermally Induced Phase Separation. I. Solid-Liquid Phase Separation," J. Membr. Sci., 52, 239-261(1990). https://doi.org/10.1016/S0376-7388(00)85130-3
  8. Lloyd, D. R., Kim, S. S. and Kinzer, K. E., "Microporous Membrane Formation via Thermally-induced Phase Separation. II. Liquid-liquid Phase Separation," J. Membr. Sci., 64, 1-11(1991). https://doi.org/10.1016/0376-7388(91)80073-F
  9. Kim, S. S. and Lloyd, D. R., "Microporous Membrane Formation via Thermally-induced Phase Separation. III. Effect of Thermodynamic Interactions on the Structure of Isotactic Polypropylene Membranes," J. Membr. Sci., 64, 13-29(1991). https://doi.org/10.1016/0376-7388(91)80074-G
  10. Wang, Y. F. and Lloyd, D. R., "Isothermal Crystallization of Isotactic Polypropylene in Dotriacontane. IV. Effect of Dilution and Crystallization Temperature on Overall Crystallization Kinetics," Polymer, 34, 4740-4746(1993). https://doi.org/10.1016/0032-3861(93)90711-I
  11. Cha, B. J. and Yang, J. M., "Preparation of Poly(vinylidene fluoride) Hollow Fiber Membranes for Microfiltration Using Modified TIPS Process," J. Membr. Sci., 291, 191-198(2007). https://doi.org/10.1016/j.memsci.2007.01.008
  12. Matsuyama, H., Takida, Y., Maki, T. and Teramoto, M., "Preparation of Porous Membrane by Combined Use of Thermally Induced Phase Separation and Immersion Precipitation, " Polymer, 43, 5243-5248(2002). https://doi.org/10.1016/S0032-3861(02)00409-3
  13. Li, X. Y., Lu, X. and Xiao, C., "Morpology Changes of Polyvinylidene Fluoride Membreane Under Different Phase Separation Mechanisms," J. Membr. Sci., 320, 477-482(2008). https://doi.org/10.1016/j.memsci.2008.04.033
  14. Rajabzadeh, S., Maruyama, T.. Sotani, T. and Matsuyama, H., "Preparation of PVDF Hollow Fiber Membrane from a Ternary Polymer/solvent/nonsolvent System via TIPS Method," Sep. Purif. Technol., 63, 415-423(2008). https://doi.org/10.1016/j.seppur.2008.05.027
  15. Xu, H.-P., Lang, W.-Z., Zhang, X. and Guo, Y.-J., "Preparation and Characterizations of Charged PVDF Membranes via Composite Thermally Induced Phase Separation (C-TIPS) Method," J. Ind. Eng. Chem., 21, 1005-1013(2015). https://doi.org/10.1016/j.jiec.2014.05.009

Cited by

  1. 열유도상분리법 적용을 위한 PVDF-DBP 소재의 특성평가 vol.26, pp.6, 2016, https://doi.org/10.14579/membrane_journal.2016.26.6.449
  2. SNIPS 공정을 이용한 블록공중합체 분리막의 구조 형성에 관한 연구 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.214
  3. 다공성 분리막 제조를 위한 폴리플루오르화비닐리덴-실리카 혼합물의 열유도상분리 연구 vol.27, pp.2, 2016, https://doi.org/10.14579/membrane_journal.2017.27.2.189
  4. 열유도상분리법을 이용한 응고조의 열용량에 따른 PVDF 분리막의 구조 분석 vol.27, pp.4, 2016, https://doi.org/10.14579/membrane_journal.2017.27.4.350
  5. 열유도 상분리/비용매유도 상분리 혼합 공정에 의한 PVDF 중공사막 제조에서 응고액의 영향 vol.42, pp.2, 2018, https://doi.org/10.7317/pk.2018.42.2.311
  6. 열유도 상분리로 제조한 플라워 형태 단면을 갖는 PVDF 분리막의 친수성 코팅 및 특성평가 vol.29, pp.6, 2016, https://doi.org/10.14579/membrane_journal.2019.29.6.362
  7. Multi-bore PSf 중공사막의 내화학성 및 세척 효율 특성평가 vol.30, pp.2, 2016, https://doi.org/10.14579/membrane_journal.2020.30.2.138