DOI QR코드

DOI QR Code

Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon

정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교

  • Lee, Choul Ho (Department of Chemical Engineering, Kongju National University) ;
  • Park, Nayoung (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Goun (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2015.11.23
  • Accepted : 2015.11.28
  • Published : 2016.02.10

Abstract

In this study, a pellet-type adsorbent was prepared by using the water-treatment sludge as a raw material, and its physical and chemical properties were analyzed through $N_2$-adsorption, XRD, XRF, and $NH_3$-TPD measurements. Adsorption performance for gaseous ammonia and formaldehyde was compared between the pellet-type adsorbents prepared from water-treatment sludge and the impregnated activated carbon. Although the surface area and pore volume of the pellet-type adsorbent produced from water-treatment sludge were much smaller than those of the impregnated activated carbon, the pellet-type adsorbent produced from water-treatment sludge could adsorb ammonia gas even more than that of using the impregnated activated carbon. The pellet-type adsorbent prepared from water-treatment sludge showed a superior adsorption capacity for ammonia which can be explained by chemical adsorption ascribed to the higher amount of acid sites on the pellet-type adsorbent prepared from water-treatment sludge. In the case of formaldehyde adsorption, the impregnated activated carbon was far superior to the adsorbent made from the water-treatment sludge, which can be attributed to the increased surface area of the impregnated activated carbon.

본 연구에서는 정수슬러지를 원료로 사용하여 펠렛형 흡착제를 제조하고 질소흡착법, XRD, XRF 및 암모니아 승온탈착법 등을 사용하여 물리 화학적 특성을 분석하였다. 정수슬러지 유래 펠렛형 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체의 흡착 성능을 비교하였다. 정수슬러지로부터 제조된 펠렛형 흡착제는 첨착활성탄보다 표면적과 기공부피는 훨씬 작지만 암모니아를 훨씬 더 많이 흡착할 수 있었다. 이는 정수슬러지로부터 제조된 펠렛형 흡착제 표면에 산점이 훨씬 더 많이 분포해 있어서 화학흡착에 의해 암모니아를 흡착하기 때문이다. 반면에, 산성가스인 포름알데히드 가스 흡착의 경우는 넓은 표면적과 발달된 기공으로 인하여 첨착활성탄의 흡착성능이 정수슬러지로부터 제조된 펠렛형 흡착제에 비해 훨씬 우수하였다.

Keywords

References

  1. K. C. Kang, Y. H. Kim, J. M. Kim, C. H. Lee, and S. W. Rhee, Synthesis of $AlPO_4$-type mesoporous materials using alum sludge, Appl. Chem. Eng., 22, 173-177 (2011).
  2. I. H. Kim, Study on the using water purifying AlPO4-based zeolite synthesis and ammonia removal, PhD Dissertation, Chonbuk National University, Chonbuk, Korea (2007).
  3. J. M. Kim, M. K. Kim, J. M. Lee, C. H. Lee, S. W. Lee, D. J. Choi, and J. M. La, Method of manufacturing a building material composition eco-friendly, Korea Patent 10-1041094 (2011).
  4. G. R. Xu, Z. C. Yan, Y. C. Wang, and N. Wang, Recycle of alum recovered from water treatment sludge in chemically enhanced primary treatment, J. Hazard. Mater., 161, 663-669 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.008
  5. M. Seredych, C. Strydom, and T. J. Bandosz, Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents, Waste Manage., 28, 1983-1992 (2008). https://doi.org/10.1016/j.wasman.2007.08.020
  6. J. Y. Lee, S. H. Park, J. K. Jeon, K. S. Yoo, S. S. Kim, and Y. K. Park, The removal of low concentration formaldehyde over sewage sludge char treated using various methods, Korean J. Chem. Eng., 28, 1556-1560 (2011). https://doi.org/10.1007/s11814-011-0007-7
  7. Z. H. Pan, J. Y. Tian, G. R. Xu, J. J. Li, and G. B. Li, Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment, Water Res., 45, 819-827 (2011). https://doi.org/10.1016/j.watres.2010.09.008
  8. W. Yuan and T. J. Bandosz, Removal of hydrogen sulfide from biogas on sludge-derived adsorbents, Fuel, 86, 2736-2746 (2007). https://doi.org/10.1016/j.fuel.2007.03.012
  9. G. R. Xu, W. T. Zhang, and G. B. Li, Adsorbent obtained from CEPT sludge in wastewater chemically enhanced treatment, Water Res., 39, 5175-5185 (2005). https://doi.org/10.1016/j.watres.2005.09.043
  10. N. Park, J. Bae, C. H. Lee, and J. K. Jeon, Extrusion of pellet-type adsorbents employed with alum sludge and H2S removal performance, Clean Technol., 19, 121-127 (2013). https://doi.org/10.7464/ksct.2013.19.2.121
  11. J. Bae, N. Park, C. H. Lee, Y. K. Park, and J. K. Jeon, Adsorption performance of basic gas over pellet-type adsorbents prepared from water treatment sludge, Korean Chem. Eng. Res., 51, 352-357 (2013). https://doi.org/10.9713/kcer.2013.51.3.352
  12. J. Bae, N. Park, G. Kim, C. H. Lee, Y. K. Park, and J. K. Jeon, Characteristics of pellet-type adsorbents prepared from water treatment sludge and their effect on trimethylamine removal, Korean. J. Chem. Eng., 31, 624-629 (2014). https://doi.org/10.1007/s11814-013-0272-8
  13. N, Park, J. Bae, G. Kim, J. K. Jeon, Y. K. Park, and C. H. Lee, Synthesis of nanoporous adsorbents using alum sludge, J. Nanosci. Nanotechnol., 15, 5321-5325 (2015). https://doi.org/10.1166/jnn.2015.10411
  14. T. J. Bandosz, On the adsorption/oxidation of hydrogen sulfide on unmodified activated carbon at temperatures near ambient, J. Colloids. Interf. Sci., 246, 1-20 (2002). https://doi.org/10.1006/jcis.2001.7952
  15. F. Adib, A. Bagreev, and T. J. Bandosz, Adsorption/oxidation of hydrogen sulfide on nitrogen modified activated carbons, Langmuir, 16, 1980-1986 (2000). https://doi.org/10.1021/la990926o
  16. A. Bagreev and T. J. Bandosz, A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons, Ind. Eng. Chem. Res., 41, 672-679 (2002). https://doi.org/10.1021/ie010599r
  17. L. M. Le Leuch, A. Subrenat, and P. Le Cloirec, Hydrogen sulfide and ammonia removal on activated carbon fiber cloth-supported metal oxides, Environ. Technol., 26, 1243-1254 (2005). https://doi.org/10.1080/09593332608618594
  18. M. Polovina, B. Kaluderovic, and B. Babic, Ammonia adsorption on chemically modified activated carbon cloth, J. Serb. Chem. Soc., 63, 653-659 (1998).
  19. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everet, J. H. Haynes, N. Pernicone, J. Ramsay, K. S. Sing, and K. K. Unger, Recommendations for the characterization of porous solids. Pure Appl. Chem., 66, 1739-1758 (1994). https://doi.org/10.1351/pac199466081739
  20. G. Liu, Z. Mi, L. Wang, and X. Zhang, Kinetics of dicyclopentadiene hydrogenation over $Pd/Al_2O_3$ catalyst, Ind. Eng. Chem. Res, 44, 3846-3851 (2005). https://doi.org/10.1021/ie0487437
  21. S. Lee, J. Kim, C. Y. Yun, and J. Yi, Adsorption characteristics of the sericite and diatomite for ammonia gas, Clean Technology, 12, 175-181 (2006).
  22. S. Tanada, N. Kawasaki, T. Nakamura, M. Araki, and M. Isomura, Removal of formaldehyde by activated carbons containing amino groups, J. Colloid Interface Sci., 214, 106-108 (1999). https://doi.org/10.1006/jcis.1999.6176
  23. C. Ma, X. Li, and T. Zhu, In situ growth of a carbon interphase between carbon fibres and a polycarbosiland-derived silicon carbide matrix, Carbon, 49, 2869-2872 (2011). https://doi.org/10.1016/j.carbon.2011.02.056

Cited by

  1. A study on the evaluation of odor adsorption capacity of biomass by-product using odor sensor vol.17, pp.1, 2016, https://doi.org/10.15250/joie.2018.17.1.27
  2. Biomimic-Inspired and Recyclable Nanogel for Contamination Removal from Water and the Application in Treating Bleaching Effluents vol.59, pp.18, 2016, https://doi.org/10.1021/acs.iecr.9b07039
  3. 정수슬러지를 이용한 제올라이트의 합성 및 특성연구 vol.26, pp.4, 2016, https://doi.org/10.7464/ksct.2020.26.4.263