DOI QR코드

DOI QR Code

Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper Oxya chinensis sinuosa

  • Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Markkandan, Kesavan (Theragen ETEX Bio Institute, Theragen Etex Inc.) ;
  • Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Subramaniyam, Sathiyamoorthy (Theragen ETEX Bio Institute, Theragen Etex Inc.) ;
  • Yoo, Seungil (Theragen ETEX Bio Institute, Theragen Etex Inc.) ;
  • Park, Junhyung (Theragen ETEX Bio Institute, Theragen Etex Inc.) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2016.08.11
  • Accepted : 2016.08.30
  • Published : 2016.11.28

Abstract

Antimicrobial peptides/proteins (AMPs) are present in all types of organisms, from microbes and plants to vertebrates and invertebrates such as insects. The grasshopper Oxya chinensis sinuosa is an insect species that is widely consumed around the world for its broad medicinal value. However, the lack of available genetic information for this species is an obstacle to understanding the full potential of its AMPs. Analysis of the O. chinensis sinuosa transcriptome and expression profile is essential for extending the available genetic information resources. In this study, we determined the whole-body transcriptome of O. chinensis sinuosa and analyzed the potential AMPs induced by bacterial immunization. A high-throughput RNA-Seq approach generated 94,348 contigs and 66,555 unigenes. Of these unigenes, 36,032 (54.14%) matched known proteins in the NCBI database in a BLAST search. Functional analysis demonstrated that 38,219 unigenes were clustered into 5,499 gene ontology terms. In addition, 26 cDNAs encoding novel AMPs were identified by an in silico approach using public databases. Our transcriptome dataset and AMP profile greatly improve our understanding of O. chinensis sinuosa genetics and provide a huge number of gene sequences for further study, including genes of known importance and genes of unknown function.

Keywords

References

  1. Azam I, Afsheen S, Zia A, Javed M, Saeed R, Sarwar MK, Munir B. 2015. Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. Biomed. Res. Int. 2015: 942751.
  2. Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, et al. 2011. Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 6: e17274. https://doi.org/10.1371/journal.pone.0017274
  3. Badman J, Harrison JF, McGarry MP. 2007. Grasshoppers in research and education: methods for maintenance and production. Lab Anim. (NY) 36: 27.
  4. Chen S, Yang P, Jiang F, Wei Y, Ma Z, Kang L. 2010. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS One 5: e15633. https://doi.org/10.1371/journal.pone.0015633
  5. Cherniack EP. 2010. Bugs as drugs, Part 1: Insects: the "new" alternative medicine for the 21st century. Altern. Med. Rev. 15: 124-135.
  6. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  7. Costa-Neto EM. 2005. Entomotherapy, or the medicinal use of insects. J. Ethnobiol. 25: 93-114. https://doi.org/10.2993/0278-0771(2005)25[93:EOTMUO]2.0.CO;2
  8. Dang HX, Lawrence CB. 2014. Allerdictor: fast allergen prediction using text classification techniques. Bioinformatics 30: 1120-1128. https://doi.org/10.1093/bioinformatics/btu004
  9. Ganguly A, Chakravorty R, Sarkar A, Mandal DK, Haldar P, Ramos-Elorduy J, Moreno JMP. 2014. A preliminary study on Oxya fuscovittata (Marschall) as an alternative nutrient supplement in the diets of Poecillia sphenops (Valenciennes). PLoS One 9: e111848. https://doi.org/10.1371/journal.pone.0111848
  10. Goodwin S, McPherson JD, McCombie WR. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17: 333-351.
  11. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. 2013. De novo transcript sequence reconstruction from RNA-Seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8: 1494-1512. https://doi.org/10.1038/nprot.2013.084
  12. Hadley EB, Hancock RE. 2010. Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Curr. Top. Med. Chem. 10: 1872-1881. https://doi.org/10.2174/156802610793176648
  13. Huang Y, Niu B, Gao Y, Fu L, L i W. 2010. CD-HIT Suite: a Web server for clustering and comparing biological sequences. Bioinformatics 26: 680-682. https://doi.org/10.1093/bioinformatics/btq003
  14. Jin Y, Cong B, Wang L, Gao Y, Zhang H, Dong H, Lin Z. 2016. Differential gene expression analysis of the Epacromius coerulipes (Orthoptera: Acrididae) transcriptome. J. Insect Sci. 16: 42. https://doi.org/10.1093/jisesa/iew014
  15. Kim I-W, Lee JH, Subramaniyam S, Yun E-Y, Kim I, Park J, Hwang JS. 2016. De novo transcriptome analysis and detection of antimicrobial peptides of the American cockroach Periplaneta americana (Linnaeus). PLoS One 11: e0155304. https://doi.org/10.1371/journal.pone.0155304
  16. Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 1. https://doi.org/10.1186/1471-2105-12-1
  17. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346: 763-767. https://doi.org/10.1126/science.1257570
  18. Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. 2016. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371: 20150290. https://doi.org/10.1098/rstb.2015.0290
  19. Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible Insects: Future Prospects for Food and Feed Security. FAO Forestry, Rome.
  20. Vilcinskas A. 2013. Evolutionary plasticity of insect immunity. J. Insect Physiol. 59: 123-129. https://doi.org/10.1016/j.jinsphys.2012.08.018
  21. Vilcinskas A, Mukherjee K, Vogel H. 2013. Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. Proc. Biol. Sci. 280: 20122113.
  22. Waghu F H, B arai R S, G urung P, Idicula-Thomas S. 2015. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 44: D1094- D1097.
  23. Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. 2014. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5: 2957. https://doi.org/10.1038/ncomms3957
  24. Yan T, Yoo D, Berardini TZ, Mueller LA, Weems DC, Weng S, et al. 2005. PatMatch: a program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Res. 33: W262-W266. https://doi.org/10.1093/nar/gki368
  25. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. 2006. WEGO: a Web tool for plotting GO annotations. Nucleic Acids Res. 34: W293-W297. https://doi.org/10.1093/nar/gkl031
  26. Zhang S, Pang B, Zhang L. 2015. Novel odorant-binding proteins and their expression patterns in grasshopper, Oedaleus asiaticus. Biochem. Biophys. Res. Commun. 460: 274-280. https://doi.org/10.1016/j.bbrc.2015.03.024
  27. Zhang Y, Sun G, Yang M, Wu H, Zhang J, Song S, et al. 2011. Chronic accumulation of cadmium and its effects on antioxidant enzymes and malondialdehyde in Oxya chinensis (Orthoptera: Acridoidea). Ecotoxicol. Environ. Saf. 74: 1355-1362. https://doi.org/10.1016/j.ecoenv.2011.03.002

Cited by

  1. Evaluation of novel factor Xa inhibitors from Oxya chinensis sinuosa with anti-platelet aggregation activity vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-08330-1
  2. Hepatoprotective Effects of Insect Extracts in an Animal Model of Nonalcoholic Fatty Liver Disease vol.10, pp.6, 2018, https://doi.org/10.3390/nu10060735
  3. Cysmotif Searcher Pipeline for Antimicrobial Peptide Identification in Plant Transcriptomes vol.83, pp.11, 2016, https://doi.org/10.1134/s0006297918110135
  4. Enhanced pig production: potential use of insect gut microbiota for pig production vol.45, pp.4, 2016, https://doi.org/10.7744/kjoas.20180043
  5. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? vol.20, pp.22, 2016, https://doi.org/10.3390/ijms20225713
  6. Antimicrobial Peptides in Plants: Classes, Databases, and Importance vol.3, pp.2, 2016, https://doi.org/10.24870/cjb.2019-000130
  7. Protective effects of Oxya chinensis sinuosa Mishchenko against ultraviolet B-induced photodamage in hairless mice vol.19, pp.1, 2019, https://doi.org/10.1186/s12906-019-2692-4
  8. Collection of antimicrobial peptides database and its derivatives: Applications and beyond vol.29, pp.1, 2020, https://doi.org/10.1002/pro.3714
  9. Edible Oxya chinensis sinuosa —Derived Protein as a Potential Nutraceutical for Anticancer Immunity Improvement vol.12, pp.11, 2020, https://doi.org/10.3390/nu12113236
  10. Integration of transcriptome and proteome reveals molecular mechanisms underlying stress responses of the cutworm, Spodoptera litura, exposed to different levels of lead (Pb) vol.283, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2021.131205