DOI QR코드

DOI QR Code

Progressive Collapse of Exterior Reinforced Concrete Beam-Column Sub-assemblages: Considering the Effects of a Transverse Frame

  • Rashidian, Omid (Civil Engineering Department, Iran University of Science and Technology) ;
  • Abbasnia, Reza (Civil Engineering Department, Iran University of Science and Technology) ;
  • Ahmadi, Rasool (Building and House Research Centre) ;
  • Nav, Foad Mohajeri (Civil Engineering Department, Iran University of Science and Technology)
  • Received : 2016.02.21
  • Accepted : 2016.07.30
  • Published : 2016.12.30

Abstract

Many experimental studies have evaluated the in-plane behavior of reinforced concrete frames in order to understand mechanisms that resist progressive collapse. The effects of transverse beams, frames and slabs often are neglected due to their probable complexities. In the present study, an experimental and numerical assessment is performed to investigate the effects of transverse beams on the collapse behavior of reinforced concrete frames. Tests were undertaken on a 3/10-scale reinforced concrete sub-assemblage, consisting of a double-span beam and two end columns within the frame plane connected to a transverse frame at the middle joint. The specimen was placed under a monotonic vertical load to simulate the progressive collapse of the frame. Alternative load paths, mechanism of formation and development of cracks and major resistance mechanisms were compared with a two-dimensional scaled specimen without a transverse beam. The results demonstrate a general enhancement in resistance mechanisms with a considerable emphasis on the flexural capacity of the transverse beam. Additionally, the role of the transverse beam in restraining the rotation of the middle joint was evident, which in turn leads to more ductile behavior. A macro-model was also developed to further investigate progressive collapse in three dimensions. Along with the validated numerical model, a parametric study was undertaken to investigate the effects of the removed column location and beam section details on the progressive collapse behavior.

Keywords

References

  1. ACI Committee 318-02. (2002). Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (318R-02). Farmington Hills, MI: American Concrete Institute.
  2. Ahmadi, R., Rashidian, O., Abbasnia, R., Mohajeri Nav, F., & Yousefi, N. (2016). Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column sub-assemblage. Shock and Vibration,. doi:10.1155/2016/3748435.
  3. Altoonash, A. (2004). Simulation and damage models for performance assessment of reinforced concrete beam-column joints. Ph.D. Dissertation, Standford University, Stanford, CA.
  4. Bao, Y. H., & Kunnath, S. K. (2010). Simplified progressive collapse simulation of RC frame-wall structures. Engineering Structures, 32(10), 3153-3162. https://doi.org/10.1016/j.engstruct.2010.06.003
  5. Bao, Y. H., Kunnath, S. K., El-Tawil, S., & Lew, H. S. (2008). Macro-model based simulation of progressive collapse: RC frame structures. Journal of Structural Engineering, 134(7), 1079-1091. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1079)
  6. Bao, Y. H., Lew, H. S., & Kunnath, S. K. (2014). Modeling of reinforced concrete assemblies under a column removal scenario. Journal of Structural Engineering, 140(1), 04013026. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000773
  7. Bentz, E. C. (2000). Membrane-2000: Reinforced Concrete Membrane Analysis using the Modified Compression Field Theory. Toronto, Canada: University of Toronto.
  8. Choi, H., & Kim, J. (2011). Progressive collapse-resisting capacity of RC beam-column sub-assemblage. Magazine of Concrete Research, 63(4), 297-310. https://doi.org/10.1680/macr.9.00170
  9. Department of Defense (DoD) Unified facilities criteria (UFC). (2010). Design of buildings to resist progressive collapse. UFC 4-023-03, U.S. DoD.
  10. Farhang Vesali, N., Valipour, H., Samali, B., & Foster, S. (2013). Development of arching action in longitudinallyrestrained reinforced concrete beams. Construction and Building Materials, 47, 7-19. https://doi.org/10.1016/j.conbuildmat.2013.04.050
  11. Harris, H. G., & Sabins, G. M. (1999). Structural modeling and experimental technique (2nd ed.). Boca Raton, FL: CRC Press.
  12. Jian, H., & Zheng, Y. (2014). Simplified models of progressive collapse response and progressive collapse-resisting capacity curve of RC beam-column substructures. Journal of Performance of Constructed Facilities, 28(4), 04014008. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000492
  13. Kim, J., & Choi, H. (2015). Monotonic loading tests of RC beam-column subassemblage strengthened to prevent progressive collapse. International Journal of Concrete Structures and Materials, 9(4), 401-413. https://doi.org/10.1007/s40069-015-0119-2
  14. Lew, H. S., Bao, Y. H., Main, J. A., Pujol, S., & Sozen, M. A. (2014). Experimental study of reinforced concrete assemblies under column removal scenario. ACI Structural Journal, 111(4), 881-892.
  15. Lew, H. S., Bao, Y. H., Sadek, F., Main, J. A., Pujol, S., & Sozen, M. A. (2011). An experimental and computational study of reinforced concrete assemblies under a column removal scenario. NIST Technical Note 1720.
  16. Lowes, L. N., & Altoontash, A. (2003). Modeling reinforcedconcrete beam-column joints subjected to cyclic loading. Journal of Structural Engineering, 129(12), 1686-1697. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1686)
  17. McKenna F et al. (2007). Open system for earthquake engineering simulation (OpenSees). http://www.opensees. berkeley.edu. PEER. Berkeley, CA: University of California.
  18. Qian, K., & Li, B. (2012a). Dynamic performance of reinforced concrete beam-column substructures under the scenario of the loss of corner column-Experimental results. Engineering Structures, 42, 154-167. https://doi.org/10.1016/j.engstruct.2012.04.016
  19. Qian, K., & Li, B. (2012b). Slab effects on the response of reinforced concrete substructures after loss of corner column. ACI Structural Journal, 109(6), 845-856.
  20. Qian, K., & Li, B. (2015). Quantification of slab influences on the dynamic performance of RC frames against progressive collapse. ASCE Journal of Performance of Constructed Facilities, 29(1), 04014025. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000493
  21. Qian, K., Li, B., & Ma, J. X. (2014). Load-carrying mechanism to resist progressive collapse of RC buildings. Journal of Structural Engineering (ASCE), 141(2), 04014107.
  22. Qian, K., Li, B., & Zhang, Z. W. (2015). Testing and Simulation of 3D Effects on Progressive Collapse Resistance of RC Buildings. Magazine of Concrete Research, 67(4), 163-178. https://doi.org/10.1680/macr.14.00178
  23. Sasani, M., Bazan, M., & Sagiroglu, S. (2007). Experimental and analytical progressive collapse evaluation of an actual reinforced concrete structure. ACI Structural Journal, 104(6), 731-739.
  24. Sasani, M., Kazemi, A., Sagiroglu, S., & Forest, S. (2011a). Progressive collapse resistance of an actual 11-story structure subjected to severe initial damage. Journal of Structural Engineering, 137(9), 893-902. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000418
  25. Sasani, M., & Kropelnicki, J. (2008). Progressive collapse analysis of an RC structure. The Structural Design of Tall and Special Buildings, 17(4), 757-771. https://doi.org/10.1002/tal.375
  26. Sasani, M., & Sagiroglu, S. (2008). Progressive collapse resistance of hotel San Diego. Journal of Structural Engineering, 134(3), 478-488. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:3(478)
  27. Sasani, M., Werner, A., & Kazemi, A. (2011b). Bar fracture modeling in progressive collapse analysis of reinforced concrete structures. Engineering Structures, 33, 401-409. https://doi.org/10.1016/j.engstruct.2010.10.023
  28. Su, Y. P., Tian, Y., & Song, X. S. (2009). Progressive collapse resistance of axially-restrained frame beams. ACI Structural Journal, 106(5), 600-607.
  29. Tsai, M. H., & Huang, T. C. (2015). Collapse-resistant performance of RC beam-column sub-assemblages with varied section depth and stirrup spacing. The Structural Design of Tall and Special Buildings, 24(8), 555-570. https://doi.org/10.1002/tal.1199
  30. Vecchio, F. J., & Collins, M. P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 83(2), 219-231.
  31. Yi, W. J., He, Q. F., Xiao, Y., & Kunnath, S. K. (2008). Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal, 105(4), 433-439.
  32. Yu, J., & Tan, K. H. (2011). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106.
  33. Yu, J., & Tan, K. H. (2013a). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106. https://doi.org/10.1016/j.engstruct.2011.08.040
  34. Yu, J., & Tan, K. H. (2013b). Structural behaviour of reinforced concrete beam-column sub-assemblages under a middle column removal scenario. Journal of Structural Engineering, 139(2), 233-250. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000658
  35. Yu, J., & Tan, K. H. (2014). Special detailing techniques to improve structural resistance against progressive collapse. Journal of Structural Engineering, 140(3), 04013077. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000886

Cited by

  1. Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0190-y
  2. Seismic Performance of Exterior RC Beam–Column Joints Retrofitted using Various Retrofit Solutions vol.11, pp.3, 2016, https://doi.org/10.1007/s40069-017-0203-x
  3. Modelling of Stirrup Confinement Effects in RC Layered Beam Finite Elements Using a 3D Yield Criterion and Transversal Equilibrium Constraints vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0278-z
  4. Dynamic Increase Factor for Nonlinear Static Analysis of RC Frame Buildings Against Progressive Collapse vol.17, pp.3, 2016, https://doi.org/10.1007/s40999-017-0253-0
  5. Assessment of Delay Factors for Structural Frameworks in Free-form Tall Buildings Using the FMEA vol.13, pp.1, 2016, https://doi.org/10.1186/s40069-018-0309-9
  6. Factors influencing the progressive collapse resistance of RC frame structures vol.27, pp.None, 2016, https://doi.org/10.1016/j.jobe.2019.100986
  7. Progressive collapse test of assembled monolithic concrete frame spatial substructures with different anchorage methods in the beam-column joint vol.23, pp.9, 2016, https://doi.org/10.1177/1369433219900679
  8. An Equivalent Method for Bar Slip Simulation in Reinforced Concrete Frames vol.18, pp.8, 2016, https://doi.org/10.1007/s40999-020-00507-6
  9. An analytical model on compressive arch action capacity of 3D beam-column sub-assemblages under failure of one or two adjacent interior columns vol.115, pp.None, 2016, https://doi.org/10.1016/j.engfailanal.2020.104690
  10. Prediction of Catenary Action Capacity of RC Beam-Column Substructures under a Missing Column Scenario Using Evolutionary Algorithm vol.25, pp.3, 2016, https://doi.org/10.1007/s12205-021-0431-0
  11. Progressive collapse risk of 2D and 3D steel-frame assemblies having shear connections vol.179, pp.None, 2016, https://doi.org/10.1016/j.jcsr.2021.106533
  12. Dynamic Behavior of a Precast and Partial Steel Joint under Various Shear Span-to-Depth Ratios vol.14, pp.9, 2021, https://doi.org/10.3390/ma14092162
  13. Experimental Studies on Progressive Collapse Behavior of RC Frame Structures: Advances and Future Needs vol.15, pp.1, 2016, https://doi.org/10.1186/s40069-021-00469-6