DOI QR코드

DOI QR Code

Dust collection system optimization with air blowing and dust suction module

에어 블로어와 흡입기능을 가진 미세먼지 흡입시스템의 최적화

  • Jeong, Wootae (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Kwon, Soon-Bark (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Ko, Sangwon (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Park, Duckshin (Transportation Environmental Research Team, Korea Railroad Research Institute)
  • 정우태 (한국철도기술연구원 교통환경연구팀) ;
  • 권순박 (한국철도기술연구원 교통환경연구팀) ;
  • 고상원 (한국철도기술연구원 교통환경연구팀) ;
  • 박덕신 (한국철도기술연구원 교통환경연구팀)
  • Received : 2015.11.04
  • Accepted : 2016.01.05
  • Published : 2016.01.31

Abstract

The performance of track cleaning trains to remove accumulated fine particulate matter in subway tunnels depends on the design of the suction system equipped under the train. To increase the efficiency of the suction system under the cleaning vehicle, this paper proposes a novel dust suction module equipped with both air blowing nozzles and a dust suction structure. Computational Fluid Dynamics (CFD) analysis with turbulent flow was conducted to optimize the dust suction system with a particle intake and blowing function. The optimal angle of the air blowing nozzle to maximize the dust removal rate was found to be 6 degrees. The performance of the track cleaning vehicle can be increased by at least 10 percent under an operation speed of 5km/h.

도시철도 터널내에 축적된 미세먼지(PM10 and PM2.5)의 제거를 위해 사용되는 분진흡입차량의 성능은 하부흡입시스템의 설계방법에 따라 성능이 달라진다. 본 논문에서는 터널집진차량의 하부에 설치된 먼지흡입시스템의 고효율화를 위하여 궤도의 바닥면에 쌓인 먼지를 비산시키는 압축공기 블로어와 먼지 흡입구를 동시에 가지는 모듈화된 먼지흡입구조를 제안하였다. 흡입과 블로어의 상반된 구조를 동시에 가진 흡입시스템의 먼지유동 최적화를 위해 난류유동에 기초한 수치해석을 수행하였다. 해석결과로 먼지흡입효율을 최대화 할 수 있는 공기 블로어의 설치각이 $6^{\circ}$ 내외에서 결정되고, 이를 적용하면 5 km/h의 청소속도를 가지는 분진흡입차량의 흡입효율을 10%이상 높일 수 있음을 확인하였다.

Keywords

References

  1. L. M. Brosseau, et al., "Dust cleaning: a review of associated health effects and results of company and expert surveys", ASHRAE Trans., Vol. 106, pp. 180-187, 2000.
  2. J. F. Hurley, et al., "Assessment of health effects of long-term occupational exposure to tunnel dust in the London Underground", Research Report, 2003.
  3. D. Park, et al., "Reduction of Particulate Matters Levels in Railway Cabins in Korea", Journal of Environmental Health Science and Engineering, Vol. 38(1), pp. 51-56, 2012. DOI: http://dx.doi.org/10.5668/jehs.2012.38.1.051
  4. C. M. Ma, et al., "Chemical Properties and Source Profiles of Particulate Matter Collected on an Underground Subway Platform", Asian Journal of Atmospheric Environment, Vol. 9-2, pp. 165-172, June, 2015. https://doi.org/10.5572/ajae.2015.9.2.165
  5. Y. H. Cheng and Y. L. Lin, "Measurement of Particle Mass Concentrations and Size Distributions in an Underground Station", Aerosol and Air Quality Research, Vol. 10, pp. 22-29, 2010. DOI: http://dx.doi.org/10.4209/aaqr.2009.05.0037
  6. D. Park, et al., "Identification of the source of PM10 in a subway tunnel using positive matrix factorization", Journal of the Air & Waste Management Association, Vol. 64(12), pp. 1361-1368, 2014. DOI: http://dx.doi.org/10.1080/10962247.2014.950766
  7. W. C. Hinds, "Aerosol technology: properties, behavior, and measurement of airborne particles", A Wiley Interscience Publication, 2012.
  8. D. C. Wilcox, "Turbulence modeling for CFD", DCW Industries, Inc., 1998.
  9. T. H. Shih, et al., "A New $k-{\varepsilon}$ Eddy Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation," Computers & Fluids, Vol.24(3), p.227-238, 1995. DOI: http://dx.doi.org/10.1016/0045-7930(94)00032-T
  10. B. E. Launder, et al., "Progress in the Development of a Reynolds-Stress Turbulence Closure," J. Fluid Mech., Vol. 68, pp. 537-566, 1975. DOI: http://dx.doi.org/10.1017/S0022112075001814

Cited by

  1. Performance evaluation of a hybrid dust collector for removing particles during subway train operation pp.1521-7388, 2019, https://doi.org/10.1080/02786826.2019.1578333