DOI QR코드

DOI QR Code

Effect of relative density on the shear behaviour of granulated coal ash

  • Yoshimoto, Norimasa (Department of Civil Engineering, Yamaguchi University) ;
  • Wu, Yang (Department of Civil Engineering, Yamaguchi University) ;
  • Hyodo, Masayuki (Department of Civil Engineering, Yamaguchi University) ;
  • Nakata, Yukio (Department of Civil Engineering, Yamaguchi University)
  • Received : 2015.07.07
  • Accepted : 2015.12.11
  • Published : 2016.02.25

Abstract

Granulated coal ash (GCA), a mixture of the by-product from milling processes with a small amount of cement added, has recently come to be used as a new form of geomaterial. The shear strength and deformation behaviours of GCA are greatly determined by its relative density or void ratio. A series of drained triaxial compression tests were performed on cylindrical specimens of GCA at confining pressures of between 50 kPa and 400 kPa at initial relative densities of 50%, 70% and 80%. Experimental results show that a rise in relative density increases the peak shear strength and intensifies the dilation behaviour. The initial tangent modulus and secant modulus of the stress-strain curve increase with increasing initial relative density, whereas the axial and volumetric strains at failure decrease with level of initial relative density. The stress-dilatancy relationships of GCA at different relative densities and confining pressures display similar tendency. The dilatancy behaviour of GCA is modelled by the Nova rule and the material property N in Nova rule of GCA is much larger than that of natural sand.

Keywords

References

  1. Atkinson, J.H. and Bransby, P.L. (1977), The Mechanics of Soils, An Introduction to Critical State Soil Mechanics, McGRAW-HILL, Maidenhead, Berkshire, England.
  2. Been, K. and Jefferies, M.G. (1985), "A state parameter for sands", Geotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99
  3. Been, K. and Jefferies, M. (2004), "Stress-dilatancy in very loose sand", Can. Geotech. J., 41(5), 972-989. https://doi.org/10.1139/t04-038
  4. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65
  5. Bopp, P.A. and Lade, P.V. (2005), "Relative density effects on undrained sand behavior at high pressures", Soils Found., 45(1), 15-26. https://doi.org/10.3208/sandf.45.15
  6. Consoli, N.C., Heineck, K.S., Coop, M.R., Fonseca, A.V.D. and Ferreira, C. (2007), "Coal bottom ash as a geomaterial: Influence of particle morphology on the behavior of granular materials", Soils Found., 47(2), 361-373. https://doi.org/10.3208/sandf.47.361
  7. Consoli, N.C., Rocha, C.G.D. and Saldanha, R.B. (2014), "Coal fly ash-carbide lime bricks: An environment friendly building product", Construct. Build. Mater., 69, 301-309. https://doi.org/10.1016/j.conbuildmat.2014.07.067
  8. Dash, S.K. (2010), "Influence of relative density of soil on performance of Geocell-reinforced Sand Foundation", J. Mater. Civ. Eng., 22(5), 533-538. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000040
  9. Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil. Mech. Found. Div., 96(5), 1629-1653.
  10. Gutierrez, M. (2003), "Modelling of the steady-state response of granular soils", Soils Found., 43(5), 95-105.
  11. Horiuchi, S., Taketsuka, M., Odawara, T. and Kawasaki, H. (1992), "Fly-Ash Slurry Island: Ι. Theoretical and experimental investigations", J. Mater. Civ. Eng., 4(2), 117-133. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:2(117)
  12. Horiuchi, S., Tamaoki, K. and Yasuhara, K. (1995), "Coal ash slurry for effective underwater disposal", Soils Found., 35(1), 1-10. https://doi.org/10.3208/sandf1972.35.1
  13. Jefferies, M.G. (1993), "Nor-Sand: A simple critical state model for sand", Geotechnique, 43(1), 91-103. https://doi.org/10.1680/geot.1993.43.1.91
  14. Kawasaki, H., Horiuchi, S., Akatsuka, M. and Sano, S. (1992), "Fly-Ash Slurry Island: ΙΙ. Construction in Hakucho Ohashi Project", J. Mater. Civ. Eng., 4(2), 134-152. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:2(134)
  15. Kim, Y.T., Lee, C. and Park, H.I. (2011), "Experimental Study on Engineering Characteristic of Composite Geomaterial for Recycling Dredged Soil and Bottom Ash", Mar. Georesour. Geotec., 29(1), 1-15. https://doi.org/10.1080/1064119X.2010.514237
  16. Kumar, S. (2003), "Fly ash-lime-phosphogypsum hollow blocks for walls and partitions", Build. Environ., 38(2), 291-295. https://doi.org/10.1016/S0360-1323(02)00068-9
  17. Lade, P.V. and Bopp, P.A. (2005), "Relative density effects on drained sand behavior at high pressures", Soils Found., 45(1), 1-13. https://doi.org/10.3208/sandf.45.1
  18. Lade, P.V., Yamamuro, J. and Bopp, P.A. (1996), "Significance of particle crushing in granular materials", J. Geotech. Engrg., 122(4), 309-316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309)
  19. Li, H.N., Yi, T.H., Gu, M. and Huo, L.S. (2009), "Evaluation of earthquake-induced structural damages by wavelet transform", Prog. Nat. Sci., 19(4), 461-470. https://doi.org/10.1016/j.pnsc.2008.09.002
  20. Mohamad, E.T., Latifi, N., Marto, A., Moradi, R. and Abad, S. (2013), "Effects of relative density on shear strength characteristics of sand-tie chips mixture", Electronic. J. Geotech. Eng., 18, 623-632.
  21. Nova, R. (1982), "A Constitutive Model for Soil under Monotonic and Cyclic Loading. Soil mechanicstransient and cyclic loads", John Wiley & Sons, New York, USA.
  22. Panich, V. and Pitthaya, J. (2014), "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomech. Eng., Int. J., 6(5), 437-453. https://doi.org/10.12989/gae.2014.6.5.437
  23. Pappu, A., Saxena, M. and Asolekar, S.R. (2007), "Solid wastes generation in India and their recycling potential in building materials", Build. Environ., 42(6), 2311-2320. https://doi.org/10.1016/j.buildenv.2006.04.015
  24. Park, L.K., Suneel, M. and Chul, I.J. (2008), "Shear strength of Jumunjin sand according to relative density", Mar. Georesour. Geotec., 26(2), 101-110. https://doi.org/10.1080/10641190802022445
  25. Roscoe, K.H. and Burland, J.B. (1968), "On the generalized stress-strain behaviour of wet clay", Eng. Plast., 535-609.
  26. Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963), "Yielding of Clays in State Wetter than Critical", Geotechnique, 13(3), 211-240. https://doi.org/10.1680/geot.1963.13.3.211
  27. Salot, C., Gotteland, P. and Villard, P. (2009), "Influence of relative density on granular materials behavior: DEM simulations of triaxial tests", Granul. Matter., 11(4), 221-236. https://doi.org/10.1007/s10035-009-0138-2
  28. Shang, H.S., Yi, T.H. and Yang, L.S. (2012), "Experimental study on the compressive strength of big mobility concrete with nondestructive testing method", Adv. Mater. Sci. Eng., ID 345214.
  29. Taylor, D.W. (1948), Fundamentals of Soil Mechanics, John Wiley, New York, NY, USA.
  30. Tiwari, A. and Shukla, S.K. (2014), Advanced Carbon Materials and Technology, John Wiley and Sons, Inc., Hoboken, NJ, USA.
  31. Trivedi, A. and Sud, V.K. (2002), "Grain characteristics and engineering properties of coal ash", Granul. Matter., 4(3), 93-101. https://doi.org/10.1007/s10035-002-0114-6
  32. Villamizar, M.C.N., Araque, V.S., Reyes, C.A.R. and Silva, R.S. (2012), "Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks", Constr. Build. Mater., 36, 276-286. https://doi.org/10.1016/j.conbuildmat.2012.04.056
  33. Wan, R.G. and Guo, P.J. (1998), "A simple constitutive model for granular soils: modified stress-dilatancy approach", Comput. Geotech., 22(2), 109-133. https://doi.org/10.1016/S0266-352X(98)00004-4
  34. Winter, M., Ohara, N., Hyodo, M., Nakata, Y., Yoshimoto, N., Yoshioka, I. and Nakashita, A. (2013), "Effect of particle strength on the monotonic shear strength of clinker ash", Geo. Lett., 3(3), 112-118.
  35. Wu, Y. and Yamamoto, H. (2015), "Numerical Investigation on the Reference Crushing Stress of Granular Materials in Triaxial Compression Test", Period. Polytech. Civil Eng., 59(4), 465-474. https://doi.org/10.3311/PPci.7694
  36. Wu, Y., Yamamoto, H., Yao, Y.P. (2013), "Numerical study on bearing behavior of pile considering sand particle crushing", Geomech. Eng., Int. J., 5(3), 241-261. https://doi.org/10.12989/gae.2013.5.3.241
  37. Wu, Y., Yoshimoto, N., Hyodo, M. and Nakata, Y. (2014), "Evaluation of crushing stress at critical state of granulated coal ash in triaxial test", Geo. Lett., 4(4), 337-342.
  38. Yi, T.H., Li, H.N. and Zhao, X.Y. (2012), "Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique", Sensors, 12(8), 11205-11220. https://doi.org/10.3390/s120811205
  39. Yoshimoto, N., Hyodo, M., Nakata, Y., Murata, H., Hongo, T. and Ohnaka, A. (2005), "Particle characteristics of granulated coal ash as geomaterial", J. Soc. Mater. Sci., 54(11), 1111-1116. [In Japanese] https://doi.org/10.2472/jsms.54.1111
  40. Yoshimoto, N., Hyodo, M., Nakata, Y. and Orense, R.P. (2007), "An examination of the utilization of granulated coal as geomaterial based on particle strength", Tsuchi to Kiso, 55(10), 23-25. [In Japanese]
  41. Yoshimoto, N., Hyodo, M., Nakata, Y., Orense, R.P., Hongo, T. and Ohnaka, A. (2012), "Evaluation of shear strength and mechanical properties of granulated coal ash based on single particle strength", Soils Found., 52(2), 321-334. https://doi.org/10.1016/j.sandf.2012.02.009
  42. Yoshimoto, N., Orense, R.P., Hyodo, M. and Nakata, Y. (2014), "Dynamic behavior of Granulated coal ash during earthquake", J. Geotech. Geoenviron., 140(2), 04013002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000986
  43. Zhuang, L., Nakata, Y., Kim, U.G. and Kim, D. (2014), "Influence of relative density, particle shape, and stress path on the plane strain compression behavior of granular materials", Acta. Geotech., 9(2), 241-255. https://doi.org/10.1007/s11440-013-0253-4

Cited by

  1. Influences of particle characteristic and compaction degree on the shear response of clinker ash vol.230, 2017, https://doi.org/10.1016/j.enggeo.2017.09.019
  2. The Shear Strength of the Nature Loess Joint: A Case Study in Shaanxi Province vol.47, pp.3, 2018, https://doi.org/10.1520/JTE20170759
  3. Determination of active failure surface geometry for cohesionless backfills vol.12, pp.6, 2017, https://doi.org/10.12989/gae.2017.12.6.983
  4. Experimental study on crushable coarse granular materials during monotonic simple shear tests vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.687
  5. Prediction models of the shear modulus of normal or frozen soil-rock mixtures vol.15, pp.2, 2016, https://doi.org/10.12989/gae.2018.15.2.783
  6. 3D stress-fractional plasticity model for granular soil vol.17, pp.4, 2016, https://doi.org/10.12989/gae.2019.17.4.385
  7. Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads vol.19, pp.3, 2019, https://doi.org/10.12989/gae.2019.19.3.241
  8. Factors affecting particle breakage of calcareous soil retrieved from South China Sea vol.22, pp.2, 2016, https://doi.org/10.12989/gae.2020.22.2.173
  9. Mechanical properties of calcareous silts in a hydraulic fill island-reef vol.39, pp.1, 2016, https://doi.org/10.1080/1064119x.2020.1748775
  10. Correlation of Critical State Strength Properties with Particle Shape and Surface Fractal Dimension of Clinker Ash vol.21, pp.6, 2016, https://doi.org/10.1061/(asce)gm.1943-5622.0002027
  11. Assessment of crack stress thresholds and development of a pre-failure indicator using Digital Image Correlation approach for coal specimen vol.7, pp.4, 2016, https://doi.org/10.1007/s40948-021-00300-2