DOI QR코드

DOI QR Code

Estimation of Suspended Sediment Concentration in Small Stream with Acoustic Backscatter from Horizontal ADCP based on Real-Scale Field Experiment

실규모 현장 실험 기반 H-ADCP 초음파 산란도 활용 소하천용 하천 부유사 농도 측정 기법 개발

  • 서강현 (단국대학교 토목환경공학과) ;
  • 김동수 (단국대학교 토목환경공학과) ;
  • 손근수 (단국대학교 토목환경공학과)
  • Received : 2016.05.16
  • Accepted : 2016.09.23
  • Published : 2016.12.01

Abstract

Suspended sediment concentration (SSC) is a crucial riverine parameter in terms that it can be utilized for analyzing sediment transport, stability assessment of river and structure and so on. However, in case of domestic, sediment discharge data are not enough because of using conventional sediment samplers. This study aimed at developing a practical technique for estimating suspended sediment concentration in high spatial and temporal resolution by building relationship between acoustic backscatter (or SNR) from H-ADCP with actually observed data using LISST-100X. In this regard, a dedicated correction algorithm was proposed particularly for the adapted H-ADCP (SonTek SL-3000). Then, a SNR-SSC relation was built based upon a real-scale field experiment, where both H-ADCP and LISST-100X were concurrently operated to observe SNR and SSC, respectively. The coefficient of determination for the developed regression equation of SNR-SSC relation was around 0.85~0.88, thereby the relation could be evaluated to be highly correlated. The result of this study might be potentially applied for real-time and simultaneous observation of SSC when H-ADCP could be applied.

부유사 농도는 유사이송해석, 하천 및 구조물의 안정성 평가 등에 있어서 매우 중요한 자료라 할 수 있다. 그러나, 국내의 경우 주로 재래식 채집방식으로 유사량을 관측하고 있어 유사량 자료가 현저히 부족한 실정이다. 이에 본 연구에서는 수평초음파도플러유속계(H-ADCP)에서 제공하는 신호대잡음비(SNR)와 레이저부유사측정기(LISST-100X)를 활용한 실측 부유사농도와의 상관관계를 구축하여 H-ADCP를 활용하여 공간 시간적으로 정밀한 유사량을 지속적으로 추정할 수 있는 기법을 개발하고자 한다. 이를 위해 H-ADCP의 신호대잡음비 보정식을 개발하였으며, 실규모 하천에서 유사를 인위적으로 공급하며 H-ADCP와 LISST를 활용하여 신호대잡음비와 부유사농도 자료를 계측하고, 개발된 보정식이 적용된 신호대잡음비-부유사농도(SNR-SSC) 관계식을 시범적으로 구축해 보았다. 구축한 SNR-SSC 관계로부터 상관계수 0.85~0.88의 상대적으로 높은 상관도를 가진 선형회귀식을 구성할 수 있었으며, 본 연구 결과는 자동유량측정장치로 사용되고 있는 H-ADCP를 적절히 활용할 경우 실시간 유사량 관측이 가능하다는 점을 시사한다.

Keywords

References

  1. Anandalatchoumy, S. and Sivaradje, G. (2015). "Comprehensive study of acoustic channel models for underwater wireless communication networks." International Journal on Cybernetics & Informatics, Vol. 4, No. 2, pp. 227-240. https://doi.org/10.5121/ijci.2015.4222
  2. Choi, G., Lee, H., Koo, B. and Seo, J. (2007). "Compare and analysis of the sediment formula measuring a nature river." Proceeding of Korea Water Resource Association Civil Expo, pp. 1293-1296 (in Korean).
  3. Coates, R. (2006). "The Sonar Course vs. 3.1" Seiche Ltd., pp. 214-220.
  4. David, S. Mueller. (2002). "Use of acoustic doppler instruments for measuring discharge in streams with appreciable sediment transport." USGS Conference Paper, pp. 250-260.
  5. Gartner, J. W. (2004). "Estimating suspended solids concentrations from backscatter intensity measured by acoustic doppler current profiler in san francisco bay, California." International Journal of Marine Geology, Geochemistry & Geophysics, Marine Geology 211(2004), pp. 169-187.
  6. Gartner, J. W., Cheng, R. T., Wang, P.-F. and Richter, K. (2001). "Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations." International Journal of Marine Geology, Geochemistry & Geophyscics, Marine Geology 175(2001), pp. 199-219.
  7. Guerrero, M., Szupiany, R. and Latosinski, F. (2015). "Multi-frequency acoustics for suspended sediment studies: an application in the Parana River." Journal of Hydraulic Research, Vol. 51, No. 6, pp. 696-707. https://doi.org/10.1080/00221686.2013.849296
  8. Hoitink, A. and Hoekstra, P. (2005). "Observation of suspended sediment from ADCP and OBS measurements in a mud dominated environment." Costal Engineering, Vol. 52, No. 2, pp. 103-118. https://doi.org/10.1016/j.coastaleng.2004.09.005
  9. ISO 1088 (2007). "Hydrometry-velocity-area methods using currentmeters-collection and processing of data for determination of uncertainties in flow measurement." International Organization for Standardization, ISO 1088, Geneva, Switzerland.
  10. Jung, S. (2008). "Current and future of hydrological survey center." Magazine of Korea Water Resources Association, Vol. 41, No. 8, pp. 10-14 (in Korean).
  11. Kim, J. M., Kim, D. S., Son, G. S. and Kim, S. J. (2015) "Accuracy analysis of velocity and water depth measurement in the straight channel using ADCP." Journal of Korea Resource Association, Vol. 48, No. 5, pp. 367-377 (in Korean). https://doi.org/10.3741/JKWRA.2015.48.5.367
  12. Lee, Y., Lee, J. and Lee, J. (2008) "Current state and future direction for river sediment discharge Survey in 2008." Magazine of Korea Water Resources Association, Vol. 42, No. 12, pp. 82-89 (in Korean).
  13. Muste, M., Kim, D., Gonzalez-Castro, K., Burkhardt, A. and Brownson, Z. (2006). "Near-transducer errors in acoustic doppler current profiler measurements." World Environmental and Water Resource Congress, pp. 10-20.
  14. Park, M. H., Yeo, H. G. and Yoon, K. S. (2011). "Instruction of korea institute of civil engineering and building technology river experiment center." Journal of Korea Water Resource Association, Vol. 44, No. 11, pp. 58-65 (in Korean).
  15. Robert, B. T. (1985). "Measuring suspended sediment in small mountain streams." Pacific Southwest Forest and Range Experiment Station, General Technical Report PSW-83.
  16. Sequoia (2012). LISST-100X User's Manual Version 5.
  17. Son, H. S., Park, J. B. and Joo, Y. H. (2013). "Intelligent range decision method for figure of merit of sonar equation." Journal of Korean Institute of Intelligent Systems, Vol. 23, No. 4, pp. 304-309. https://doi.org/10.5391/JKIIS.2013.23.4.304
  18. SonTek (2014). The new SonTek-SL (3G) Doppler flow meter.
  19. Thonon, I., Roberti, H., Middelkoop, H., van der Perk, M. and Burrough, P. (2005). "In situ measurements of sediment settling characteristics in floodplains using a LISST-ST." Earth Surf. Processes 2005, Vol. 30, No. 10, pp. 1327-1343.
  20. Thosteson, E. D. and Hanes, D. M. (1998) "A simplified method for determining sediment size and concentration from multiple frequency acoustic backscatter measurements." Journal of the Acoustical Society of America 1988, 104 Vol. 2, No. 1, pp. 820-830. https://doi.org/10.1121/1.423356
  21. Thorne, P. and Hardscastle, P. (1997). "Acoustic measurement of suspended sediments in turbulent currents and comparison with in-situ samples." Journal of Acoustic Society and Atmosphere, Vol. 101, No. 5, pp. 2603-2614. https://doi.org/10.1121/1.418501
  22. Traykovski, P., Latter, R. J. and Irish, J. D. (1999) "A laboratory evaluation of the laser in situ scattering and transmissometry instrument using natural sediments." International Journal of Marine Geology, Geochemistry & Geophysics, Marine Geology 1999, Vol. 159, pp. 355-367.
  23. Urick (1983). "Principles of underwater sound 3rd edition." Peninsula Publishing Co, pp. 16-30.
  24. Van Wijngaarden, M. and Roberti, J. R. (2002). "In situ measurements of settling velocity and particle distribution with the LISST-ST. In: Winterwerp, J.C., Kranenburg, C. (Eds.), Fine Sediment Dynamics in the Marine Environment." Elseiver Science B.V., Amsterdam, 2002, pp. 295-311.
  25. Wall, G., Nystrom, E. and Litten, S. (2006) "Use of an ADCP to compute suspended sediment discharge in the Tidal Hudson River, New York." USGS Scientific Investigations Report 2006-5055.
  26. Woo, H. and Yu, K. (1990) "Test and application of the modified einstein procedure to rivers in Korea: Estimation of Total Sediment Discharge." Korea Institute of Construction Technology Research Report (in Korean).
  27. Woo, H., Kim, W. and Ji, W. (2015). "River Hydraulics 2nd edition." Cheong Moon Gak Publishing Co. (in Korean)
  28. Zedal, L. (2008). "Modeling pulse-to-pulse coherent doppler sonar." Journal of Atmospheric and Oceanic Technology, 25, pp. 1834-1844. https://doi.org/10.1175/2008JTECHO585.1