DOI QR코드

DOI QR Code

Determination of Antibiotic Residues: I. Extraction and Clean-up Methods for Solid Samples_A Review

시료 중 잔류 항생제 분석 방법: I. 고상 시료 전처리 방법

  • Kim, Chansik (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Ryu, Hong-Duck (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Chung, Eu Gene (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Yongseok (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Rhew, Doug Hee (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
  • 김찬식 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 류홍덕 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 정유진 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 김용석 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 류덕희 (국립환경과학원 물환경연구부 유역총량연구과)
  • Received : 2016.07.11
  • Accepted : 2016.11.21
  • Published : 2016.11.30

Abstract

Korea is one of the countries with a large veterinary antibiotics market, although antimicrobial resistance in bacteria is becoming a serious issue in many countries. The Korean government started to take interest in estimating the effects of livestock manure on rivers and agricultural soils and in monitoring of heavy metals, organic pollutants and antibiotics in the ambient water and soil. In this paper, pre-treatment methods to separate the selected antibiotics from solid samples were reviewed. It is essential to select an efficient and appropriate procedure for pre-treatment due to the high proportion of proteins and organics in biosolid samples. Pre-treatment consists of extraction followed by clean-up. Initially, homogenized samples were extracted by sonication, mechanical agitation or pressurized liquid extraction with methanol/acetonitrile/water mixture under acidic/basic conditions depending on the compound. However, aminoglycosides and colistin were extracted with 5% trichloroacetic acid and HCl, respectively. Since the ${\beta}-lactams$ are easily decomposed in acidic and basic conditions, they were extracted in neutral pH. Filtration with a membrane (pore size, $0.2{\mu}m$) or solid phase extraction with HLB and methanol, as eluents, was normally applied for the clean-up. At least, three different pre-treatment procedures should be adopted to screen all the selected antibiotics in solid samples.

Keywords

References

  1. Adams, C., Wang, Y., Lofin, K., and Meyer, M. (2002). Removal of Antibiotics from Surface and Distilled Water in Conventional Water Treatment Process, Journal of environmental engineering, 128(3), pp. 253-260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
  2. Amelin, V. G., Volkova, N. M., Timofeev, A. A., and Tretyakov, A. V. (2015). QuEChERS Sample Preparation in the Simultaneous Determination of Residual Amounts of Quinolones, Sulfanilamides, and Amphenicols in Food Using HPLC with a Diode-Array Detector, Journal of Analytical Chemistry, 70(9), pp. 1076-1084. https://doi.org/10.1134/S1061934815090026
  3. Anastassiades, M., Lehotay, S. J., Stajnbaher, D., and Schenck, F. J. (2003). Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and "Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce, Journal of AOAC International, 86(2), pp. 412-431.
  4. Barket, S. A. (2007). Matrix Solid Dispersion (MSPD), Journal of Biochemical and Biophysical Methods, 70(2), pp. 151-162. https://doi.org/10.1016/j.jbbm.2006.06.005
  5. Bak, S. A., Hansen, M., Pederson, K. M., Halling-Sorensen, B., and Bjoklund, E. (2013). Quantification of Four Ionophores in Soil, Sediment and Manure Using Pressurised Liquid Extraction, Journal of Chromatography A, 1307, pp. 27-33. https://doi.org/10.1016/j.chroma.2013.07.062
  6. Ben, W., Qiang, Z., Adams, C., Zhang, H., and Chen, L. (2008). Simultaneous Determination of Sulfonamides, Tetracyclines and Tiamulin in Swine Wastewater by Solid-Phase Extraction and Liquid Chromatography-Mass Spectrometry, Journal of Chromatography A, 1202(2), pp. 173-180. https://doi.org/10.1016/j.chroma.2008.07.014
  7. Berendsen, B. J., Gerritsen, H. W., Wegh, R. S., Lameris, S., van Sebille, R., Stolker, A. A., and Nielen, M. W. (2013). Comprehensive Analysis of ${\beta}$-Lactam Antibiotics Including Penicillins, Cephalosporins, and Carbapenems in Poultry Muscle Using Liquid Chromatography Coupled to Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 405(24), pp. 7859-7874. https://doi.org/10.1007/s00216-013-6804-6
  8. Biswal, B. K., Mazza, A., Masson, L., Gehr, R., and Frigon, D. (2014). Impact of Wastewater Treatment Processes on Antimicrobial Resistance Genes and Their Co-occurrence with Virulence Genes in Escherichia Coli, Water Research, 50, pp. 245-253. https://doi.org/10.1016/j.watres.2013.11.047
  9. Bjorklund, E., Nilsson, T., and Bowadt, S. (2000). Pressurised Liquid Extraction of Persistent Organic Pollutants in Environmental Analysis, TrAC Trends in Analytical Chemistry, 19(7), pp. 434-445. https://doi.org/10.1016/S0165-9936(00)00002-9
  10. Bonnet, R. (2004). Growing Group of Extended-Spectrum ${\beta}$-Lactamases: the CTX-M Enzymes, Antimicrobial Agents and Chemotherapy, 48(1), pp. 1-14. https://doi.org/10.1128/AAC.48.1.1-14.2004
  11. Boscher, A., Guignard, C., Pellet, T., Hoffmann, L., and Bohn, T. (2010). Development of a Multi-Class Method for the Quantification of Veterinary Drug Residues in Feedingstuffs by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1217(41), pp. 6394-6404. https://doi.org/10.1016/j.chroma.2010.08.024
  12. Bousova, K., Senyuva, H., and Mittendorf, K. (2013). Quantitative Multi -Residue Method for Determination Antibiotics in Chicken Meat Using Turbulent Flow Chromatography Coupled to Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1274, pp. 19-27. https://doi.org/10.1016/j.chroma.2012.11.067
  13. Capriotti, A. L., Cavaliere, C., Giansanti, P., Gubbiotti, R., Samperi, R., and Lagana, A. (2010). Recent Developments in Matrix Solid-Phase Dispersion Extraction, Journal of Chromatography A, 1217(16), pp. 2521-2532. https://doi.org/10.1016/j.chroma.2010.01.030
  14. Carretero, V., Blasco, C., and Pico, Y. (2008). Multi-Class Determination of Antimicrobials in Meat by Pressurized Liquid Extraction and Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1209(1), pp. 162-173. https://doi.org/10.1016/j.chroma.2008.09.011
  15. Centers for Disease Control and Prevention (CDC). (2013). Antibiotic Resistance Threats in the United States, 2013, Center for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, Georgia, pp. 13-17.
  16. Chafer-Pericas, C., Maquieira, A., Puchades, R., Company, B., Miralles, J., and Moreno, A. (2010). Multiresidue Determination of Antibiotics in Aquaculture Fish Samples by HPLC-MS/MS, Aquaculture Research, 41(9), pp. e217-e225. https://doi.org/10.1111/j.1365-2109.2010.02504.x
  17. Chander, Y., Oliveira, S., and Goyal, S. M. (2011). Characterisation of Ceftiofur Resistance in Swine Bacterial Pathogens, The Veterinary Journal, 187(1), pp. 139-141. https://doi.org/10.1016/j.tvjl.2009.10.013
  18. Chen, Y., Hu, X., and Xiao, X. (2010). Sample Preparation for Determination of Neomycin in Swine Tissues by Liquid Chromatography-Fluorescence Detection, Analytical Letters, 43(16), pp. 2496-2504. https://doi.org/10.1080/00032711003725599
  19. Chen, H. and Zhang, M. (2013). Effects of Advanced Treatment Systems on the Removal of Antibiotic Resistance Genes in Wastewater Treatment Plants from Hangzhou, China, Environmental Science & Technology, 47, pp. 8157-8163.
  20. Chen, Y., Zhang, H., Luo, Y., and Song, J. (2012). Occurrence and Dissipation of Veterinary Antibiotics in Two Typical Swine Wastewater Treatment Systems in East China, Environmental Monitoring and Assessment, 148(4), pp. 2205-2217.
  21. Cherlet, M., De Baere, S., and De Backer, P. (2007). Quantitative Determination of Dihydrostreptomycin in Bovine Tissues and Milk by Liquid Chromatography‐Electrospray Ionization‐Tandem Mass Spectrometry, Journal of mass spectrometry, 42(5), pp. 647-656. https://doi.org/10.1002/jms.1194
  22. Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., and Kroiss, H. (2005). Removing of Selected Pharmaceuticals, Fragrances and Endocrine Disrupting Compounds in a Membrane Bioreactor and Conventional Wastewater Treatment Plants, Water Research, 39(19), pp. 4797-4807. https://doi.org/10.1016/j.watres.2005.09.015
  23. Dasenaki, M. E. and Thomaidis, N. S. (2010). Multi-Residue Determination of Seventeen Sulfonamides and Five Tetracyclines in Fish Tissue Using a Multi-Stage LC-ESI-MS/MS Approach Based on Advanced Mass Spectrometric Techniques, Analytica Chimica Acta, 672(1), pp. 93-102. https://doi.org/10.1016/j.aca.2010.04.034
  24. Diaz-Cruz, M. S. and Barcelo, D. (2006). Determination of Antimicrobial Residues and Metabolites in the Aquatic Environment by Liquid Chromatography Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 386(4), pp. 973-985. https://doi.org/10.1007/s00216-006-0444-z
  25. Elverdam, I., Larsen, P., and Lund, E. (1981). Isolation and Characterization of Three New Polymyxins in Polymyxins B and E by High-Performance Liquid Chromatography, Journal of Chromatography A, 218, pp. 653-661. https://doi.org/10.1016/S0021-9673(00)82091-9
  26. European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. (2015). Sales of Veterinary Antimicrobial Agents in 26 EU/EEA Countries in 2013, EMA/387934/2015, European Medicines Agency, London, United Kingdom, pp. 20-26.
  27. European Union (EU). (2003). Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition, European Union.
  28. Evaggelopoulou, E. N. and Samanidou, V. F. (2013). Development and Validation of an HPLC Method for the Determination of Six Penicillin and Three Amphenicol Antibiotics in Gilthead Seabream (Sparus Aurata) Tissue According to the European Union Decision 2002/657/EC, Food Chemistry, 136(3), pp.1322-1329. https://doi.org/10.1016/j.foodchem.2012.09.044
  29. Fischbach, M. A. and Walsh, C. T. (2009). Antibiotics for Emerging Pathogens, Science, 325(5944), pp. 1089-1093. https://doi.org/10.1126/science.1176667
  30. Gorissen, B., Reyns, T., Devreese, M., De Backer, P., Van Loco, J., and Croubels, S. (2015). Determination of Selected Veterinary Antimicrobials in Poultry Excreta by UHPLCMS/MS, for Application in Salmonella Control Programs, Analytical and Bioanalytical Chemistry, 407(15), pp. 4447-4457. https://doi.org/10.1007/s00216-014-8449-5
  31. Halling-Sorensen, B., Sengelov, G., and Tjornelund, G. (2002). Toxicity of Tetracyclines and Tetracycline Degradation Products to Environmentally Relevant Bacteria, Including Selected Tetracycline-Resistant Bacteria, Archives of Environmental Contamination and Toxicology, 42(3), pp. 263-271. https://doi.org/10.1007/s00244-001-0017-2
  32. Hasman, H., Mevius, D., Veldman, K., Olesen, I., and Aarestrup, F. M. (2005). ${\beta}$-Lactamases Among Extended-Spectrum ${\beta}$-Lactamase (ESBL)-Resistant Salmonella from Poultry, Poultry Products and Human Patients in The Netherlands, Journal of Antimicrobial Chemotherapy, 56(1), pp. 115-121. https://doi.org/10.1093/jac/dki190
  33. Heller, D. N., Clark, S. B., and Righter, H. F. (2000). Confirmation of Gentamicin and Neomycin in Milk by Weak Cation-Exchange Extraction and Electrospray Ionization/Ion Trap Tandem Mass Spectrometry, Journal of Mass Spectrometry, 35(1), pp. 39-49. https://doi.org/10.1002/(SICI)1096-9888(200001)35:1<39::AID-JMS911>3.0.CO;2-Y
  34. Ho, Y. B., Zakaria, M. P., Latif, P. A., and Saari, N. (2012). Simultaneous Determination of Veterinary Antibiotics and Hormone in Broiler Manure, Soil and Manure Compost by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1262, pp. 160-168. https://doi.org/10.1016/j.chroma.2012.09.024
  35. Ho, Y. B., Zakaria, M. P., Latif, P. A., and Saari, N. (2014). Occurrence of Veterinary Antibiotics and Progesterone in Broiler Manure and Agricultural Soil in Malaysia, Science of the Total Environment, 488, pp. 261-267.
  36. Hong, Y., Sharma, V. K., Chiang, P. C., and Kim, H. (2015). Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry, Archives of Environmental Contamination and Toxicology, 69(4), pp. 525-534. https://doi.org/10.1007/s00244-015-0214-z
  37. Hormazabal, V., Yndestad, M., and Ostensvik, O. (2003). Determination of Flunixin and Tiamulin Hydrogen Fumarate in Meat and Toltrazuril and the Metabolite Toltrazurilsulfon in Meat and Eggs Using LC/MS, Journal of Liquid Chromatography & Related Technologies, 26(5), pp. 791-801. https://doi.org/10.1081/JLC-120018425
  38. Hou, J., Wan, W., Mao, D., Wang, C., Mu, Q., Qin, S., and Luo, Y. (2015). Occurrence and Distribution of Sulfonamides, Tetracyclines, Quonolones, Macrolides, and Nitrofurans in Livestock Manure and Amended Soils of Northern China, Environmental Science and Pollution Research, 22(6), pp. 4545-4554. https://doi.org/10.1007/s11356-014-3632-y
  39. Hur, J., Jawale, C., and Lee, J. H. (2012). Antimicrobial Resistance of Salmonella Isolated from Food Animals: A Review, Food Research International, 45(2), pp. 819-830. https://doi.org/10.1016/j.foodres.2011.05.014
  40. Ishii, R., Horie, M., Chan, W., and MacNeil, J. (2008). Multi-Residue Quantitation of Aminoglycoside Antibiotics in Kidney and Meat by Liquid Chromatography with Tandem Mass Spectrometry, Food Additives and Contaminants, 25(12), pp. 1509-1519. https://doi.org/10.1080/02652030802189740
  41. Jacobsen, A. M. and Halling-Sorensen, B. (2006). Multi-Component Analysis of Tetracyclines, Sulfonamides and Tylosin in Swine Manure by Liquid Chromatography-Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 384(5), pp. 1164-1174. https://doi.org/10.1007/s00216-005-0261-9
  42. Kaklamanos, G., Vincent, U., and von Holst, C. (2013). Analysis of Antimicrobial Agents in Pig Feed by Liquid Chromatography Coupled to Orbitrap Mass Spectrometry, Journal of Chromatography A, 1293, pp. 60-74. https://doi.org/10.1016/j.chroma.2013.03.078
  43. Karci, A. and Balcioglu, I. A. (2009). Investigatioon of the Tetracycline, Sulfonamide, and Fluoroquinolone Antimicrobial Compounds in Animal Manure and Agricultural Soils in Turkey, Science of the Total Environment, 407(16), pp. 4652-4664. https://doi.org/10.1016/j.scitotenv.2009.04.047
  44. Kaufmann, A. and Maden, K. (2005). Determination of 11 Aminoglycosides in Meat and Liver by Liquid Chromatography with Tandem Mass Spectrometry, Journal of AOAC International, 88, pp. 1118-1125.
  45. Kaufmann, A., Butcher, P., and Maden, K. (2012). Determination of Aminoglycoside Residues by Liquid Chromatography and Tandem Mmass Spectrometry in a Variety of Matrices, Analytica chimica acta, 711, pp. 46-53. https://doi.org/10.1016/j.aca.2011.10.042
  46. Kim, D., Oh, J., and Kim, S. (2012). The Experimental Model Development of Antibiotic Resistance Gene Transfer Characteristics with Various Micropollutants, Journal of Korean Society on Water Environment, 28(6), pp. 911-916.
  47. Kim, C. G., Jeong, H. K., Im, P. E., and Kim, T. H. (2015). Directions for Introducing Total Maximum Nutrient Loading System of Cultivaed Land, C-2015-5, Korea Rural Economic Institute, Seoul, Korea.
  48. Kim, S. C. and Carlson, K. (2007). Quantification of Human and Veterinary Antibiotics in Water anddtdd Sediment Using SPE/LC/MS/MS, Analytical and Bioanalytical Chemistry, 387(4), pp. 1301-1315. https://doi.org/10.1007/s00216-006-0613-0
  49. Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., and Snyder, S. A. (2007). Occurrence and Removal of Pharmaceuticals and Endocrine Disruptors in South Korea Surface, Drinking, and Waste Waters, Water Research, 41(5), pp. 1013-1021. https://doi.org/10.1016/j.watres.2006.06.034
  50. Kim, S. C., Park, Y. H., Lee, Y., and Kim, P. J. (2005). Comparison of OECD Nitrogen Balances of Korea and Japan, Korean Journal of Environmental Agriculture, 24(4), pp. 295-302. https://doi.org/10.5338/KJEA.2005.24.3.295
  51. Korea Ministry of Government Legislation. (2015). Act On The Management and Use of Livestock Excreta, 13526, Korea Ministry of Government Legislation.
  52. Kowalski, P., Oledzka, I., Okoniewski, P., Switala, M., and Lamparczyk, H. (1999). Determination of Streptomycin in Egg Yolk by Capillary Electrophoresis, Chromatographia, 50(1-2), pp. 101-104. https://doi.org/10.1007/BF02493625
  53. Lang, Q. and Wai, C. M. (2001). Supercritical Fluid Extraction in Herbal and Natural Product Studies-A Practical Review, Talanta, 53(4), pp. 771-782. https://doi.org/10.1016/S0039-9140(00)00557-9
  54. Lim, S. K., Moon, D. C., Joo, I. S., Kim, Y. H., Jang, G. C., Lee, H. S., Lee, J. E., Jang, S. C., Gwak, H. S., Kim, H. Y., Kim, J. W., Jung, Y. G., Park, Y. J., Kim, S. R., Jung, S. K., and Jang, J. H. (2015). National Monitoring of Antibiotic Usage and Resistance in 2014: Livestock and Food of Animal Origin, 11-1543061-000142-01, Ministry of Agriculture and Ministry, Food and Rural Affairs, pp. 13-17. [Korean Literature]
  55. Liu, J. L. and Wong, M. H. (2013). Pharmaceuticals and Personal Care Products (PPCPs):A Review on Environmental Contamination in China, Environment International, 59, pp. 208-224. https://doi.org/10.1016/j.envint.2013.06.012
  56. Lopes, R. P., Reyes, R. C., Romero-Gonzalez, R., Vidal, J. L. M., and Frenich, A. G. (2012). Multiresidue Determination of Veterinary Drugs in Aquaculture Fish Samples by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry, Journal of Chromatography B, 895, pp. 39-47.
  57. Malchi, T., Maor, Y., Tadmor, G., Shenker, M., and Chefetz, B. (2014). Irrigation of Root Vegetables with Treated Wastewater: Evaluating Uptake of Pharmaceuticals and the Associated Human Health Risks, Environmental Science & Technology, 48(16), pp. 9325-9333. https://doi.org/10.1021/es5017894
  58. Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., and Gans, O. (2007). Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria, Environmental Pollution, 148(2), pp. 570-579. https://doi.org/10.1016/j.envpol.2006.11.035
  59. Messi, P., Guerrieri, E., and Bondi, M. (2005). Antibiotic Resistance and Antibacterial Activity in Heterotrophic Bacteria of Mineral Water Origin, Science of the Total Environment, 346(1), pp. 213-219. https://doi.org/10.1016/j.scitotenv.2004.12.005
  60. Migliore, L., Civitareale, C., Cozzolino, S., Casoria, P., Brambilla, G. and Gaudio, L. (1998). Laboratory Models to Evaluate Phytotoxicity of Sulphadimethoxine on Terrestrial Plants, Chemosphere, 37(14), pp. 2957-2961. https://doi.org/10.1016/S0045-6535(98)00336-1
  61. Migliore, L., Cozzolino, S., and Fiori, M. (2003). Phytotoxicity to and Uptake of Enrofloxacin in Crop Plants, Chemosphere, 52(7), pp.1233-1244. https://doi.org/10.1016/S0045-6535(03)00272-8
  62. Moloney, M., Clarke, L., O'Mahony, J., Gadaj, A., O'Kennedy, R., and Danaher, M. (2012). Determination of 20 Coccidiostats in Egg and Avian Muscle Tissue Using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1253, pp. 94-104. https://doi.org/10.1016/j.chroma.2012.07.001
  63. Neu, H. C. (1992). The Crisis in Antibiotic Resistance, Science, 257(5073), pp. 1064-1073. https://doi.org/10.1126/science.257.5073.1064
  64. Oka, H., Ito, Y., and Matsumoto, H. (2000). Chromatographic Analysis of Tetracycline Antibiotics in Foods, Journal of Chromatography A, 882(1-2), pp. 109-133. https://doi.org/10.1016/S0021-9673(99)01316-3
  65. Organisation for Economic Co-operation and Development (OECD). (2001). Use of Farm Inputs and Natural Resources, In Volume 3. Methods and Results, Environmental Indicators for Agriculture, OECD, Paris, France. pp. 134-135.
  66. Orwa, J. A., Govaeris, C., Busson, R., Roets, E., Schepdael, A. V., and Hoogmartens, J. (2001). Isolation and Structural Characterization of Colistin Components, The Journal of Antibiotics, 54(7), pp. 595-599. https://doi.org/10.7164/antibiotics.54.595
  67. Persoons, D., Haesebrouck, F., Smet, A., Herman, L., Heyndrickx, M., Martel, A., Catry, B., Berge, A. C., Butaye, P., and Dewulf, J. (2011). Risk Factors for Ceftiofur Resistance in Escherichia Coli from Belgian Broilers, Epidemiology & Infection, 139(5), pp. 765-771. https://doi.org/10.1017/S0950268810001524
  68. Petrovic, M., Hemando, M. D., Diaz-Cruz, M. S., and Barcelo, D. (2005). Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Pharmaceutical Residues in Environmental Sample: a Review, Journal of Chromatography A, 1067(1-2), pp. 1-14. https://doi.org/10.1016/j.chroma.2004.10.110
  69. Pfeifer, Y., Cullik, A., and Witte, W. (2010). Resistance to Cephalosporins and Carbapenems in Gram-Negative Bacterial Pathogens, International Journal of Medical Microbiology, 300(6), pp. 371-379. https://doi.org/10.1016/j.ijmm.2010.04.005
  70. Pico, Y. and Andreu, V. (2007). Fluoroquinolones in Soil-Risks and Challenges, Analytical and Bioanalytical Chemistry, 387(4), pp. 1287-1299. https://doi.org/10.1007/s00216-006-0843-1
  71. Pietruk, K., Olejink, M., Jedziniak, P., and Szprengier-Juszkiewicz, T. (2015). Determination of Fifteen Coccidiostats in Feed at Carry-Over Levels Using Liquid Chromatography-Mass Spectrometry, Journal of Pharmaceutical and Biomedical Analysis, 112, pp. 50-59. https://doi.org/10.1016/j.jpba.2015.03.019
  72. Pomati, F., Orlandi, C., Clerici, M., Luciani, F., and Zuccato, E. (2008). Effects and Interactions in an Environmentally Relevant Mixture of Pharmaceuticals, Toxicological Sciences, 102(1), pp. 129-137. https://doi.org/10.1093/toxsci/kfm291
  73. Radjenovic, J., Petrovic, M., and Barcelo, D. (2009). Fate and Distribution of Pharmaceuticals in Wastewater and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment, Water Research, 43(3), pp. 831-841. https://doi.org/10.1016/j.watres.2008.11.043
  74. Rahman, M. F., Yanful, E. K., and Jasim, S. Y. (2009). Endocrine Disrupting Compounds(EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in the Aquatic Environment: Implications for the Drinking Water Industry and Global Environmental Health, Journal of Water and Health, 7(2), pp. 224-243. https://doi.org/10.2166/wh.2009.021
  75. Reverchon, E. and De Marco, I. (2006). Supercritical Fluid Extraction and Fractionation of Natural Matter, The Journal of Supercritical Fluids, 38(2), pp. 146-166. https://doi.org/10.1016/j.supflu.2006.03.020
  76. Santiago-Rodriguez, T. M., Rivera, J. I., Coradin, M., and Toranzos, G.A. (2013). Antibiotic-resistance and Virulence Genes in Enterococcus Isolated from Tropical Recreational Waters, Journal of Water and Health, pp. 387-396.
  77. Sarmah, A. K., Meyer, M. T., and Boxall, A. B. A. (2006). A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment, Chemosphere, 65(5), pp. 725-759. https://doi.org/10.1016/j.chemosphere.2006.03.026
  78. Schlusener, M. P., Con Arb, M. A., and Bester, K. (2006). Elimination of Macrolides Tiamulin and, Salinomycin During Manure Storage, Archives of Environmental Contamination and Toxicology, 51(1), pp. 21-28. https://doi.org/10.1007/s00244-004-0240-8
  79. Shendy, A. H., Al-Ghobashy, M. A., Alla, S. A. G., and Lotfy, H. M. (2016). Development and Validation of a Modified QuEChERS Protocol Coupled to LC-MS/MS for Simultaneous Determination of Multi-Class Antibiotic Residues in Honey, Food Chemistry, 190, pp. 982-989. https://doi.org/10.1016/j.foodchem.2015.06.048
  80. Stackelberg, P. E., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Henderson, A. K., and Reissman, D. B. (2004). Persistance of Pharmaceutical Compounds and Other Organic Wastewater Contaminants in a Conventional Drinking-Water-Treatment Plant, Science of the Total Environment, 329(1), pp. 99-113. https://doi.org/10.1016/j.scitotenv.2004.03.015
  81. Straus, S. K. and Hancock, R. E. (2006). Mode of Action of the New Antibiotic for Gram-Positive Pathogens Daptomycin: Comparison with Cationic Antimicrobial Peptides and Lipopeptides, Biochimica et Biophysica Acta(BBA)-Biomembranes, 1758(9), pp. 1215-1223. https://doi.org/10.1016/j.bbamem.2006.02.009
  82. Stubbings, G. and Bigwood, T. (2009). The Development and Validation of a Multiclass Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Procedure for the Determination of Veterinary Drug Residues in Animal Tissue Using a QuEChERS (Quick, Easy, Cheap, Effective Rugged and Safe) Approach, Analytica Chimica Acta, 637(1), pp. 68-78. https://doi.org/10.1016/j.aca.2009.01.029
  83. Tao, Y., Chen, D., Yu, H., Huang, L., Liu, Z., Cao, X., Yan, C., Pan, Y., Liu, Z., and Yuan, Z. (2012). Simultaneous Determination of 15 Aminoglycoside (s) Residues in Animal Derived Foods by Automated Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry, Food Chemistry, 135(2), pp. 676-683. https://doi.org/10.1016/j.foodchem.2012.04.086
  84. Thiele-Bruhn, S. (2003). Pharmaceutical Antibiotic Compounds in Soils - a Review, Journal of Plant Nutrition and Soil Science, 166(2), pp. 145-167. https://doi.org/10.1002/jpln.200390023
  85. Tolls, J. (2001). Sorption of Veterinary Pharmaceuticals in Soils: A Review, Environmental Science & Technology, 35(17), pp. 3397-3406. https://doi.org/10.1021/es0003021
  86. United States Environmental Protection Agency (U. S. EPA.). (2007). Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS, EPA-821-R-08-002, U.S. Environmental Protection Agency. Washington, DC.
  87. United States Food and Drug Administration (U. S. FDA). (2015). 2014 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals, Food and Drug Administration, Washington, DC, pp. 26-29.
  88. United States Department of Agriculture (USDA). (2011). Korea Phases Out Antibiotic Usage in Compound Feed, KS1128, USDA Foreign Agricultural Service.
  89. Van Holthoon, F. L., Essers, M. L., Mulder, P. J., Stead, S. L., Caldow, M., Ashwin, H. M., and Sharman, M. (2009). A Generic Method for the Quantitative Analysis of Aminoglycosides (and Spectinomycin) in Animal Tissue Using Methylated Internal Standards and Liquid Chromatography Tandem Mass Spectrometry, Analytica Chimica Acta, 637(1), pp. 135-143. https://doi.org/10.1016/j.aca.2008.09.026
  90. Vinas, P., Balsalobre, N., and Hernandez-Cordoba, M. (2007). Liquid Chromatography on an Amine Stationary Phase with Post-Column Derivatization and Fluorimetric Detection for the Determination of Streptomycin and Dihydrostreptomycin in Foods, Talanta, 72(2), pp. 808-812. https://doi.org/10.1016/j.talanta.2006.12.006
  91. Volmer, D. A. and Lock, C. M. (1998). Electrospray Ionization and Collision-Induced Dissociation of Antibiotic Polyether Ionophores, Rapid Communications in Mass Spectrometry, 12(4), pp. 157-164. https://doi.org/10.1002/(SICI)1097-0231(19980227)12:4<157::AID-RCM134>3.0.CO;2-M
  92. Wan, E. C. H., Ho, C., Sin, D. W. M., and Wong, Y. C. (2006). Detection of Residual Bacitracin A, Colistin A, and Colistin B in Milk and Animal Tissues by Liquid Chromatography Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 385(1), pp. 181-188. https://doi.org/10.1007/s00216-006-0325-5
  93. Watanabe, N., Bergamaschi, B. A., Loftin, K. A., Meyer, M. T., and Harter, T. (2010). Use and Environmental Occurrence of Antibiotics in Freestall Dairy Farms with Manured Forage Fields, Environmental Science and Technology, 44(17), pp. 6591-6600. https://doi.org/10.1021/es100834s
  94. Xu, Y., Tian, X., Ren, C., Huang, H., Zhang, X., Gong, X., Liu, H., Yu, Z., and Zhang, L. (2012). Analysis of Colistin A and B in Fishery Products by Ultra Performance Liquid Chromatography with Positive Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography B, 899, pp. 14-20. https://doi.org/10.1016/j.jchromb.2012.04.028
  95. Zhao, L., Dong, Y. H., and Wang, H. (2010). Residues of Veterinary Antibiotics in Manures from Feedlot Livestock in Eight Provinces of China, Science of the Total Environment, 408(5), pp. 1069-1075. https://doi.org/10.1016/j.scitotenv.2009.11.014
  96. Zhou, L. J., Ying, G. G., Liu, S., Zhao, J. L., Chen, F., Zhang, R. Q., Peng, F. Q., and Zhang, Q. Q. (2012). Simultaneous Determination of Human and Veterinary Antibiotics in Various Environmental Matrices by Rapid Resolution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography A, 1244, pp. 123-138. https://doi.org/10.1016/j.chroma.2012.04.076
  97. Zhou, L. J., Ying, G. G., Liu, S., Zhang, R. Q., Lai, H .J., Chen, Z. F., and Pan, C. G. (2013). Excretion Masses and Environmental Occurrence of Antibiotics in Typical Swine and Dairy Cattle Farms in China, Science of the Total Environment, 444, pp. 183-195. https://doi.org/10.1016/j.scitotenv.2012.11.087
  98. Zhu, W. X., Yang, J. Z., Wei, W., Liu, Y. F., and Zhang, S. S. (2008). Simultaneous Determination of 13 Aminoglycoside Residues in Foods of Animal Origin by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry with Two Consecutive Solid-Phase Extraction Steps, Journal of Chromatography A, 1207(1), pp. 29-37. https://doi.org/10.1016/j.chroma.2008.08.033