DOI QR코드

DOI QR Code

A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

  • Baek, Dongwon (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Chun, Hyun Jin (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kang, Songhwa (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Shin, Gilok (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Park, Su Jung (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Hong, Hyewon (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Chanmin (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Doh Hoon (College of Life Science and Natural Resources, Dong-A University) ;
  • Lee, Sang Yeol (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Min Chul (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Yun, Dae-Jin (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • Received : 2015.07.02
  • Accepted : 2015.11.02
  • Published : 2016.02.29

Abstract

MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.

Keywords

References

  1. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78. https://doi.org/10.1105/tpc.006130
  2. Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L., and Chiou, T.J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000-1011. https://doi.org/10.1104/pp.106.078063
  3. Baek, D., Kim, M.C., Chun, H.J., Kang, S., Park, H.C., Shin, G., Park, J., Shen, M., Hong, H., Kim, W.Y., et al. (2013). Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol. 161, 362-373. https://doi.org/10.1104/pp.112.205922
  4. Bari, R., Datt Pant, B., Stitt, M., and Scheible, W.R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988-999. https://doi.org/10.1104/pp.106.079707
  5. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  6. Brotman, Y., Lisec, J., Meret, M., Chet, I., Willmitzer, L., and Viterbo, A. (2012). Transcript and metabolite analysis of the Trichoderma- induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158, 139-146. https://doi.org/10.1099/mic.0.052621-0
  7. Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C., and Kehr, J. (2008). Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739-749. https://doi.org/10.1111/j.1365-313X.2007.03368.x
  8. Chao, D.Y., Luo, Y.H., Shi, M., Luo, D., and Lin, H.X. (2005). Saltresponsive genes in rice revealed by cDNA microarray analysis. Cell Res. 15, 796-810. https://doi.org/10.1038/sj.cr.7290349
  9. Chen, H., Li, Z., and Xiong, L. (2012). A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett. 586, 1742- 1747. https://doi.org/10.1016/j.febslet.2012.05.013
  10. Chinnusamy, V., and Zhu, J.K. (2009). Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 12, 133-139. https://doi.org/10.1016/j.pbi.2008.12.006
  11. Cushman, J.C., and Bohnert, H.J. (2000). Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3, 117-124. https://doi.org/10.1016/S1369-5266(99)00052-7
  12. Fagard, M., Dellagi, A., Roux, C., Perino, C., Rigault, M., Boucher, V., Shevchik, V.E., and Expert, D. (2007). Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi. Mol. Plant Microbe. Interact. 20, 794-805. https://doi.org/10.1094/MPMI-20-7-0794
  13. Finkelstein, R., Gampala, S.S., Lynch, T.J., Thomas, T.L., and Rock, C.D. (2005). Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol. Biol. 59, 253-267. https://doi.org/10.1007/s11103-005-8767-2
  14. Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., and Zhu, J.K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038-2043. https://doi.org/10.1016/j.cub.2005.10.016
  15. Guo, H.S., Xie, Q., Fei, J.F., and Chua, N.H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17, 1376-1386. https://doi.org/10.1105/tpc.105.030841
  16. Hsieh, L.C., Lin, S.I., Shih, A.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., and Chiou, T.J. (2009). Uncovering small RNAmediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120-2132. https://doi.org/10.1104/pp.109.147280
  17. Jagadeeswaran, G., Saini, A., and Sunkar, R. (2009). Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229, 1009-1014. https://doi.org/10.1007/s00425-009-0889-3
  18. Jia, X., Wang, W.X., Ren, L., Chen, Q.J., Mendu, V., Willcut, B., Dinkins, R., Tang, X., and Tang, G. (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol. Biol. 71, 51-59. https://doi.org/10.1007/s11103-009-9508-8
  19. Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. (2006). Micro- RNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19-53. https://doi.org/10.1146/annurev.arplant.57.032905.105218
  20. Katiyar-Agarwal, S., and Jin, H. (2010). Role of small RNAs in hostmicrobe interactions. Annu. Rev. Phytopathol. 48, 225-246. https://doi.org/10.1146/annurev-phyto-073009-114457
  21. Kim, J.Y., Lee, H.J., Jung, H.J., Maruyama, K., Suzuki, N., and Kang, H. (2010). Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta 232, 1447-1454. https://doi.org/10.1007/s00425-010-1267-x
  22. Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., and Zhu, J.K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20, 2238-2251. https://doi.org/10.1105/tpc.108.059444
  23. Liang, G., Yang, F., and Yu, D. (2010). MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 62, 1046-1057.
  24. Lin, S.I., Chiang, S.F., Lin, W.Y., Chen, J.W., Tseng, C.Y., Wu, P.C., and Chiou, T.J. (2008). Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 147, 732-746. https://doi.org/10.1104/pp.108.116269
  25. Liu, Q., and Chen, Y.Q. (2009). Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem. Biophys. Res. Commun. 384, 1-5. https://doi.org/10.1016/j.bbrc.2009.04.028
  26. Lu, X.Y., and Huang, X.L. (2008). Plant miRNAs and abiotic stress responses. Biochem. Biophys. Res. Commun. 368, 458-462. https://doi.org/10.1016/j.bbrc.2008.02.007
  27. Lu, Y.D., Gan, Q.H., Chi, X.Y., and Qin, S. (2008). Roles of micro- RNA in plant defense and virus offense interaction. Plant Cell Rep. 27, 1571-1579. https://doi.org/10.1007/s00299-008-0584-z
  28. Mallory, A.C., and Vaucheret, H. (2006). Functions of microRNAs and related small RNAs in plants. Nat. Genet. 38, S31-S36. https://doi.org/10.1038/ng1791
  29. Naya, L., Paul, S., Valdes-Lopez, O., Mendoza-Soto, A.B., Nova- Franco, B., Sosa-Valencia, G., Reyes, J.L., and Hernandez, G. (2014). Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9, e84416. https://doi.org/10.1371/journal.pone.0084416
  30. Pant, B.D., Buhtz, A., Kehr, J., and Scheible, W.R. (2008). Micro- RNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731-738. https://doi.org/10.1111/j.1365-313X.2007.03363.x
  31. Pant, B.D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., Walther, D., and Scheible, W.R. (2009). Identification of nutrientresponsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150, 1541-1555. https://doi.org/10.1104/pp.109.139139
  32. Park, M.Y., Kim, S.A., Lee, S.J., and Kim, S.Y. (2013). ATHB17 is a positive regulator of abscisic acid response during early seedling growth. Mol. Cells 35, 125-133. https://doi.org/10.1007/s10059-013-2245-5
  33. Reyes, J.L., and Chua, N.H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 49, 592-606. https://doi.org/10.1111/j.1365-313X.2006.02980.x
  34. Si, Y., Zhang, C., Meng, S., and Dane, F. (2009). Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep. 28, 997-1009. https://doi.org/10.1007/s00299-009-0703-5
  35. Sire, C., Moreno, A.B., Garcia-Chapa, M., Lopez-Moya, J.J., and San Segundo, B. (2009). Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. FEBS Lett. 583, 1039-1044. https://doi.org/10.1016/j.febslet.2009.02.024
  36. Song, J.B., Gao, S., Sun, D., Li, H., Shu, X.X., and Yang, Z.M. (2013). miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol. 13, 210. https://doi.org/10.1186/1471-2229-13-210
  37. Sunkar, R., and Zhu, J.K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001-2019. https://doi.org/10.1105/tpc.104.022830
  38. Sunkar, R., Kapoor, A., and Zhu, J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18, 2051-2065. https://doi.org/10.1105/tpc.106.041673
  39. Sunkar, R., Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 12, 301-309. https://doi.org/10.1016/j.tplants.2007.05.001
  40. Urao, T., Yamaguchi-Shinozaki, K., Urao, S., and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5, 1529-1539. https://doi.org/10.1105/tpc.5.11.1529
  41. Vidal, E.A., Araus, V., Lu, C., Parry, G., Green, P.J., Coruzzi, G.M., and Gutierrez, R.A. (2010). Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107, 4477-4482. https://doi.org/10.1073/pnas.0909571107
  42. Voinnet, O. (2008). Post-transcriptional RNA silencing in plantmicrobe interactions: a touch of robustness and versatility. Curr. Opin. Plant Biol. 11, 464-470. https://doi.org/10.1016/j.pbi.2008.04.006
  43. Voinnet, O. (2009). Origin, biogenesis, and activity of plant micro- RNAs. Cell 136, 669-687. https://doi.org/10.1016/j.cell.2009.01.046
  44. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781-803. https://doi.org/10.1146/annurev.arplant.57.032905.105444
  45. Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., et al. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. J. Biol. Chem. 280, 3697-3706. https://doi.org/10.1074/jbc.M408237200
  46. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61, 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x
  47. Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., and Jin, Y. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol. Biol. 8, 10-29.
  48. Zhao, M., Ding, H., Zhu, J.K., Zhang, F., and Li, W.X. (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol. 190, 906-915. https://doi.org/10.1111/j.1469-8137.2011.03647.x
  49. Zhou, X., Wang, G., and Zhang, W. (2007). UV-B responsive microRNA genes in Arabidopsis thaliana. Mol. Syst. Biol. 3, 103.
  50. Zhou, X., Wang, G., Sutoh, K., Zhu, J.K., and Zhang, W. (2008). Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim. Biophys. Acta. 1779, 780-788. https://doi.org/10.1016/j.bbagrm.2008.04.005

Cited by

  1. Role of microRNAs and their target genes in salinity response in plants vol.82, pp.3, 2017, https://doi.org/10.1007/s10725-017-0277-0
  2. MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade vol.168, 2017, https://doi.org/10.1016/j.jphotobiol.2017.01.017
  3. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells pp.1617-4623, 2018, https://doi.org/10.1007/s00438-018-1516-4
  4. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082450
  5. Plant small RNAs: definition, classification and response against stresses vol.73, pp.3, 2018, https://doi.org/10.2478/s11756-018-0034-5
  6. Wheat miRNA TaemiR408 Acts as an Essential Mediator in Plant Tolerance to Pi Deprivation and Salt Stress via Modulating Stress-Associated Physiological Processes vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00499
  7. Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants vol.40, pp.10, 2016, https://doi.org/10.14348/molcells.2017.0192
  8. Drought Strategy Tolerance of Four Barley Cultivars and Combined Effect with Salicylic Acid Application vol.10, pp.4, 2016, https://doi.org/10.4236/ajps.2019.104037
  9. Molecular Evolution and Functional Analysis of Rubredoxin-Like Proteins in Plants vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/2932585
  10. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants vol.17, pp.8, 2016, https://doi.org/10.1111/pbi.13116
  11. Small non-coding RNA를 발현하는 형질전환 벼의 환경위해성 평가 방법 vol.46, pp.3, 2016, https://doi.org/10.5010/jpb.2019.46.3.205
  12. Role of cis‐zeatin in root responses to phosphate starvation vol.224, pp.1, 2019, https://doi.org/10.1111/nph.16020
  13. Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils vol.11, pp.None, 2020, https://doi.org/10.3389/fpls.2020.565339
  14. Phosphate excess increases susceptibility to pathogen infection in rice vol.21, pp.4, 2016, https://doi.org/10.1111/mpp.12916
  15. Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley vol.21, pp.8, 2016, https://doi.org/10.3390/ijms21082795
  16. PLATZ2 negatively regulates salt tolerance in Arabidopsis seedlings by directly suppressing the expression of the CBL4/SOS3 and CBL10/SCaBP8 genes vol.71, pp.18, 2016, https://doi.org/10.1093/jxb/eraa259
  17. Cloning and characterization of two chlorophyll A/B binding protein genes and analysis of their gene family in Camellia sinensis vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-61317-3
  18. Comparative transcriptome study of switchgrass ( Panicum virgatum L.) homologous autopolyploid and its parental amphidiploid responding to consistent drought stress vol.13, pp.None, 2016, https://doi.org/10.1186/s13068-020-01810-z
  19. Integration of mRNA and miRNA Analysis Reveals the Molecular Mechanism of Cotton Response to Salt Stress vol.12, pp.None, 2016, https://doi.org/10.3389/fpls.2021.767984
  20. Genome-Wide Identification of Key Candidate microRNAs and Target Genes Associated with Peanut Drought Tolerance vol.40, pp.2, 2016, https://doi.org/10.1089/dna.2020.6245
  21. Variation of PHT families adapts salt cress to phosphate limitation under salinity vol.44, pp.5, 2016, https://doi.org/10.1111/pce.14027
  22. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses vol.22, pp.11, 2016, https://doi.org/10.3390/ijms22116125
  23. Identification of Novel miRNAs and Their Target Genes in the Response to Abscisic Acid in Arabidopsis vol.22, pp.13, 2021, https://doi.org/10.3390/ijms22137153
  24. Updates on the Role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA Signaling in Different Developmental Stages in Plants vol.10, pp.8, 2021, https://doi.org/10.3390/cells10081996
  25. tae-miR399-UBC24 Module Enhances Freezing Tolerance in Winter Wheat via a CBF Signaling Pathway vol.69, pp.45, 2016, https://doi.org/10.1021/acs.jafc.1c04316