DOI QR코드

DOI QR Code

Levels of Plasma Glucose and Lipid in Rats Fed Bread Supplemented with Natural Extracts

천연추출물이 첨가된 식빵을 섭취한 흰쥐의 혈당 및 지질수준에 미치는 영향

  • Kim, Se-Wook (Department of Biotechnology, College of Life Science & Biotechnology, Korea University) ;
  • Han, Ah-Ram (Department of Biotechnology, College of Life Science & Biotechnology, Korea University) ;
  • Chun, Su-Hyun (Department of Biotechnology, College of Life Science & Biotechnology, Korea University) ;
  • Nam, Mi-Hyun (Department of Biotechnology, College of Life Science & Biotechnology, Korea University) ;
  • Hong, Chung-Oui (Department of Biotechnology, College of Life Science & Biotechnology, Korea University) ;
  • Kim, Bok Hee (CJ Food ville Bakery R&D) ;
  • Kim, Tae Cheol (CJ Food ville Bakery R&D) ;
  • Lee, Kwang-Won (Department of Biotechnology, College of Life Science & Biotechnology, Korea University)
  • Received : 2015.12.03
  • Accepted : 2016.02.15
  • Published : 2016.02.29

Abstract

In this study, 4-week-old rats were fed bread supplemented with Terminalia chebula (TC), Plantago asiatica (PA), Linder obtusiloba (LO), and Capsosiphon fulvescens (CF) ethanol extracts, to determine the decrease in blood glucose levels, as well as the anti-inflammatory and lipid-enhancing effects. Previous studies have demonstrated the antioxidative effects of these ethanol extracts. After sacrifice, the liver tissue, whole blood, and serum samples were collected for biochemical analysis. The results showed a significant decrease in blood glucose level, lipid peroxidation, malondialdehyde (MDA) level, HbA1c level, total cholesterol, and low-density lipoprotein (LDL)-cholesterol (p<0.05) and an increase in high-density lipoprotein (HDL)-cholesterol level in rats fed bread supplemented with LO and CF ethanol extracts (p<0.05). Therefore, the results of this study demonstrate that bread supplemented with LO and CF ethanol extracts can potentially affect the blood glucose level and lead to lipid enhancement.

본 연구는 가자 추출물(TCE), 차전초 추출물(PAE), 생강나무잎 추출물(LOE) 그리고 매생이 추출물(CFE)을 첨가하여 식빵을 제조하고, 매일 30 g의 식빵 식이를 6주령 SD 랫드에게 제공한 뒤 혈당과 지질과 관련된 지표들의 변화를 관찰하였다. 추출물이 첨가된 식빵을 섭취한 모든 그룹에서 체중, 음수량, 간과 신장의 무게, AST, ALP, ALT의 변화는 나타나지 않았다. 식이 섭취 후 혈당의 변화를 확인하기 위해 매주 1회 절식 후 공복혈당을 측정하였을 때 1주차 측정 결과에서 Con 그룹의 혈당 수치가 $134.63{\pm}27.12mg/dL$로 BT 그룹, BP 그룹, BL 그룹 그리고 BC 그룹과 비교하여 유의적인 차이를 보이며 혈당이 상승하였고, 4주차 측정 결과에서는 Con 그룹($123.63{\pm}9.62mg/dL$), BT(그룹 $119.13{\pm}9.60mg/dL$), BP 그룹($117.37{\pm}12.77mg/dL$), BL 그룹($116.50{\pm}14.43mg/dL$)과 비교해 BC 그룹에서 $108.13{\pm}4.64$의 혈당치로 유의적인 차이를 보이며 혈당이 감소하는 것을 보아 CFE가 첨가된 식빵은 혈당강하에 도움을 줄 수 있을 것으로 판단하였다(p<0.05). 이어진 경구당부하검사 120분대 혈당치에서 BT 그룹($124.63{\pm}17.15mg/dL$), BL 그룹($121.50{\pm}13.28mg/dL$)은 Con 그룹($138.50{\pm}6.09mg/dL$)의 혈당치와 비교하여 유의적인 차이를 보이며 감소하는 것을 보여주었으며(p<0.05), AUC에서 유의적인 차이는 나타내지 않았지만 BT 그룹, BP 그룹, 그리고 BL 그룹의 area value가 적어졌다. AUC와 경구당부하검사 결과를 종합해 볼 때 TCE, PAE 그리고 LOE가 첨가된 식빵은 기존식빵에 비해 내당능에 도움을 줄 수 있을 것으로 기대된다. 또한, 혈당과 관련된 중요 지표 중 하나인 당화혈색소 측정 결과에서 Con 그룹(4.06%)과 비교해 유의적인 차이를 보이며 BL 그룹(1.53%)와 BC 그룹(2.28%)은 당화혈색소 함량이 감소하는 것을 보였다(p<0.05). 지질 측정 지표인 TC, TG, LDL-cholesterol, HDL-cholesterol 측정결과에서 BL 그룹은 TC, LDL-cholesterol을 유의적으로 낮췄으 며 BC 그룹은 TC, LDL-cholesterol을 유의적으로 낮추고 HDL-cholesterol의 함량을 유의적으로 증가시켰다. LOE와 CFE가 첨가된 식빵 식이는 제공은 지질대사의 불균형을 조절할 수 있을 것으로 사료되며 나아가 동맥경화 예방에도 도움이 될 것으로 생각된다. 지질과 관련된 유전인자인 PPAR-${\alpha}$과 PPAR-${\gamma}$에 대한 mRNA 발현을 측정한 결과 BL 그룹, BC그룹에서 Con 그룹과 유의적인 차이를 나타내며 PPAR-${\alpha}$ mRNA 발현이 증가하였고, PPAR-${\gamma}$ mRNA 발현의 경우, BP 그룹, BL 그룹, BC 그룹에서 가장 적은 발현을 나타내었다. 실험 결과를 통해 추출물 중 여러 측정 항목에서 LOE와 CFE가 첨가된 식빵식이에서 가장 좋은 활성을 보였으므로 LOE와 CFE는 공복혈당 강하와 내당능에 효과가 있으며 HDL의 합성을 촉진하여 혈중 TC의 함량을 낮춘 것으로 생각된다. 또한 PPAR-${\alpha}$의 전사를 활발하게 하고 PPAR-${\gamma}$와 관련된 유전인자의 활성을 낮춰 지질대사의 균형을 유지시키는 것으로 사료된다.

Keywords

References

  1. Koivisto VA. Insulin therapy in type II diabetes. Diabetes Care 16: 29-39 (1993) https://doi.org/10.2337/diacare.16.3.29
  2. Krolewski AS, Laffel LMB, Krolewski M, Quinn M, Warram JH. Glycosylated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus. New Engl. J. Med. 332: 1251-1255 (1995) https://doi.org/10.1056/NEJM199505113321902
  3. Wilson TA. An early step in a long ascent. Trends Mol. Med. 8: 544 (2002) https://doi.org/10.1016/S1471-4914(02)02428-0
  4. Choi YJ, Kim HC, Kim HM, Park SW, Kim JO, Kim DJ. Prevalence and management of diabetes in Korean adults: Korea national health and nutrition examination surveys 1998-2005. Diabetes Care 32: 2016-2020 (2009) https://doi.org/10.2337/dc08-2228
  5. Soedamah-Muthu SS, Chaturvedi N, Schalkwijk CG, Stehouwer CDA, Ebeling P, Fuller JH, Group EPCS. Soluble vascular cell adhesion molecule-1 and soluble E-selectin are associated with micro-and macrovascular complications in type 1 diabetic patients. J. Diabetes Complicat. 20: 188-195 (2006) https://doi.org/10.1016/j.jdiacomp.2005.06.005
  6. Park JO. Effects of methanol extract from Terminalia chebulae on renal and pulmonary toxicities induced by paraquat in rats. J. Life Sci. 18: 129-135 (2008) https://doi.org/10.5352/JLS.2008.18.1.129
  7. Lee KS, Kim SH, Sim KC, Park CS, Shin YS. Antimicrobial activity of Terminalia chebula Retz. extract of against intestinal pathogens. Korean J. Food Nutr. 10: 559-563 (1997)
  8. Achari C, V Reddy G, Cm Reddy T, Reddanna P. Chebulagic acid synergizes the cytotoxicity of doxorubicin in human hepatocellular carcinoma through COX-2 dependant modulation of MDR-1. Med. Chem. 7: 432-442 (2011) https://doi.org/10.2174/157340611796799087
  9. Bag A, Bhattacharyya SK, Pal NK, Chattopadhyay RR. Antiinflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits. Pharm. Biol. 51: 1515-1520 (2013) https://doi.org/10.3109/13880209.2013.799709
  10. Silawat N, Gupta VB. Chebulic acid attenuates ischemia reperfusion induced biochemical alteration in diabetic rats. Pharm. Biol. 51: 23-29 (2013) https://doi.org/10.3109/13880209.2012.698288
  11. Park CH. A taxonomic and systematic study of genus plantago in Korea. MS thesis, Korea University, Seoul, Korea (1996)
  12. Kwon DJ, Kim JK, Bae YS. Essential oils from leaves and twigs of Lindera obtusiloba. J. Korean For. Soc. 96: 65-69 (2007)
  13. Park JC, Yu YB, Lee JH. Isolation and structure elucidation of flavonoid glycosides from Lindera obtusiloba BL. J. Korean Soc. Food Nutr. 25: 76-79 (1996)
  14. Bang CY, Won EK, Park KW, Lee GW, Choung SY. Antioxidant activites and whitening effect from Lindera obtusiloba BL. extract. Yakhak Hoeji 52: 355-360 (2008)
  15. Jung KJ, Jung CH, Pyeun JH, Choi YJ. Changes of food compopents in mesangi (Capsosiphon fulvecense), gashiparae (Enteromorpha prolifera), and cheonggak (Codium fragile) depending on harvest times. J. Korean Soc. Food Sci. Nutr. 34: 687-693 (2005) https://doi.org/10.3746/jkfn.2005.34.5.687
  16. Kwon MJ, Nam TJ. Effects of mesangi (Capsosiphon fulvecens) powder on lipid metabolism in high cholesterol fed rats. J. Korean Soc. Food Sci. Nutr. 35: 530-535 (2006) https://doi.org/10.3746/jkfn.2006.35.5.530
  17. Hong CO, Seo MY, Koo YC, Nam MH, Lee HA, Kim JH, Wang Z, Yang SY, Lee SH, No SH, Lee KW. Single and 14-day repeated oral toxicity studies of 70% ethanol extract of Lindera obtusiloba blume leaves. J. Korean Soc. Food Sci. Nutr. 38: 1324-1330 (2009) https://doi.org/10.3746/jkfn.2009.38.10.1324
  18. Lee HS, Won NH, Kim KH, Lee HJ, Jun WJ, Lee KW. Antioxidant effects of aqueous extract of Terminalia chebula in vivo and in vitro. Biol. Pharm. Bull. 28: 1639-1644 (2005) https://doi.org/10.1248/bpb.28.1639
  19. Nam MH, Koo YC, Hong CO, Yang SY, Kim SW, Jung HL, Lee H, Kim JY, Han AR, Son WR, Pyo MC, Lee KW. In vivo study of the renal protective effects of Capsosiphon fulvescens against streptozotocin-induced oxidative stress. Korean J. Food Sci. Technol. 46: 641-647 (2014) https://doi.org/10.9721/KJFST.2014.46.5.641
  20. Park BG, Lee HS, Jung SH, Koo YC, Hong CO, Lee SJ, Lee KW. Single & 14-day repeated oral toxicity study and genotoxicological safety estimate of plantamajoside from Plantago asiatica. Toxicol. Res. 23: 79-86 (2007) https://doi.org/10.5487/TR.2007.23.1.079
  21. Sacks DB. Global harmonization of hemoglobin A1c. Clin. Chem. 51: 681-683 (2005) https://doi.org/10.1373/clinchem.2004.047431
  22. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. . 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  23. Steer KA, Sochor M, McLean P. Renal hypertrophy in experimental diabetes: Changes in pentose phosphate pathway activity. Diabetes 34: 485-490 (1985) https://doi.org/10.2337/diab.34.5.485
  24. Nannipieri M, Gonzales C, Baldi S, Posadas R, Williams K, Haffner SM, Stern MP, Ferrannini E. Liver enzymes, the metabolic syndrome, and incident diabetes the Mexico city diabetes study. Diabetes Care 28: 1757-1762 (2005) https://doi.org/10.2337/diacare.28.7.1757
  25. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: A sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol.-Renal. 290: F517-F529 (2006) https://doi.org/10.1152/ajprenal.00291.2005
  26. Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Annu. Rev. Biochem. 54: 831-862 (1985) https://doi.org/10.1146/annurev.bi.54.070185.004151
  27. Allen PJ. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?. Neurosci. Biobehav. R. 36: 1442-1462 (2012) https://doi.org/10.1016/j.neubiorev.2012.03.005
  28. Coresh J, Wei GL, McQuillan G, Brancati FL, Levey AS, Jones C, Klag MJ. Prevalence of high blood pressure and elevated serum creatinine level in the United States: Findings from the third national health and nutrition examination survey (1988-1994). Arch. Intern. Med. 161: 1207-1216 (2001) https://doi.org/10.1001/archinte.161.9.1207
  29. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann. Intern. Med. 130: 461-470 (1999) https://doi.org/10.7326/0003-4819-130-6-199903160-00002
  30. Son WR, Nam MH, Han AR, Pyo MC, Kim SW, Jung HL, Kee H, Kim JY, Lee KW. Protective effects of Capsosiphon fulvescens and pheophorbide a on streptozotocin-induced oxidative stress in testicular. J. Fd. Hyg. Safety 30: 202-209 (2015) https://doi.org/10.13103/JFHS.2015.30.2.202
  31. Rao SS, Disraeli P, McGregor T. Impaired glucose tolerance and impaired fasting glucose. Am. Fam. Physician 69: 1961 (2004)
  32. Sosenko JM, Palmer JP, Rafkin-Mervis L, Krischer JP, Cuthbertson D, Matheson D, Skyler JS. Glucose and C-peptide changes in the perionset period of type 1 diabetes in the Diabetes Prevention TrialType 1. Diabetes Care 31: 2188-2192 (2008) https://doi.org/10.2337/dc08-0935
  33. Braissant O, Foufelle F, Scotto C, Daua M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha,-beta, and-gamma in the adult rat. Endocrinology 137: 354-366 (1996) https://doi.org/10.1210/endo.137.1.8536636
  34. Le Floch JP, Escuyer P, Baudin E, Baudon D, Perlemuter L. Blood glucose area under the curve: Methodological aspects. Diabetes care 13: 172-175 (1990) https://doi.org/10.2337/diacare.13.2.172
  35. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 34: 362-366 (1981) https://doi.org/10.1093/ajcn/34.3.362
  36. Peterson KP, Pavlovich JG, Goldstein D, Little R, England J, Peterson CM. What is hemoglobin A1c? An analysis of glycated hemoglobins by electrospray ionization mass spectrometry. Clin. Chem. 44: 1951-1958 (1998)
  37. Wagner EH, Sandhu N, Newton KM, McCulloch DK, Ramsey SD, Grothaus LC. Effect of improved glycemic control on health care costs and utilization. JAMA-J. Am. Med. Assoc. 285: 182-189 (2001) https://doi.org/10.1001/jama.285.2.182
  38. Matsuyama-Yokono A, Tahara A, Nakano R, Someya Y, Hayakawa M, Shibasaki M. Chronic inhibition of dipeptidyl peptidase-IV with ASP8497 improved the HbA1c level, glucose intolerance, and lipid parameter level in streptozotocin-nicotinamide-induced diabetic mice. N-S. Arch. Pharmacol. 379: 191-199 (2009) https://doi.org/10.1007/s00210-008-0348-x
  39. Shubrook JH. Risks and benefits of attaining HbA1c Goals: Examining the evidence. J. Am. Osteopath. Assoc. 110: eS7-eS12 (2010)
  40. Sonksen P, Sonksen J. Insulin: Understanding its action in health and disease. Brit. J. Anaesth. 85: 69-79 (2000) https://doi.org/10.1093/bja/85.1.69
  41. Gould RG. Lipid metabolism and atherosclerosis. Am. J. Med. 11: 209-227 (1951) https://doi.org/10.1016/0002-9343(51)90107-6
  42. Mohun AF, Cook IJY. Simple methods for measuring serum levels of the glutamic-oxalacetic and glutamic-pyruvic transaminases in routine laboratories. J. Clin. Pathol. 10: 394-399 (1957) https://doi.org/10.1136/jcp.10.4.394
  43. Wronski TJ, Cintron M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcified Tissue Int. 43: 179-183 (1988) https://doi.org/10.1007/BF02571317
  44. Howard BV. Lipoprotein metabolism in diabetes mellitus. J. Lipid Res. 28: 613-628 (1987)
  45. Stehbens WE. The oxidative stress hypothesis of atherosclerosis: Cause or product? Med. Hypotheses 53: 507-515 (1999) https://doi.org/10.1054/mehy.1999.0801
  46. Li JM, Shah AM. ROS generation by nonphagocytic NADPH oxidase: Potential relevance in diabetic nephropathy. J. Am. Soc. Nephrol. 14: S221-S226 (2003) https://doi.org/10.1097/01.ASN.0000077406.67663.E7
  47. Drake IM, Mapstone NP, Schorah CJ, White KL, Chalmers DM, Dixon MF, Axon AT. Reactive oxygen species activity and lipid peroxidation in helicobacter pylori associated gastritis: Relation to gastric mucosal ascorbic acid concentrations and effect of H pylori eradication. Gut 42: 768-771 (1998) https://doi.org/10.1136/gut.42.6.768
  48. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37: 907-925 (1996)
  49. Murakami K, Tobe K, Ide T, Mochizuki T, Ohashi M, Akanuma Y, Yazaki Y, Kadowaki T. A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma: Effect of PPAR-alpha activation on abnormal lipid metabolism in liver of Zucker fatty rats. Diabetes 47: 1841-1847 (1998) https://doi.org/10.2337/diabetes.47.12.1841
  50. Spiegelman BM. PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507-514 (1998) https://doi.org/10.2337/diabetes.47.4.507
  51. Kim DJ, Bility MT, Billin AN, Willson TM, Gonzalez FJ, Peters JM. $PPAR{\beta}$/${\delta}$> selectively induces differentiation and inhibits cell proliferation. Cell Death Differ. 13: 53-60 (2006) https://doi.org/10.1038/sj.cdd.4401713
  52. Abbott BD. Review of the expression of peroxisome proliferatoractivated receptors alpha ($PPAR{\alpha}$), beta ($PPAR{\beta}$), and gamma ($PPAR{\gamma}$) in rodent and human development. Adv Exp. Med. Biol. 27: 246-257 (2009)