DOI QR코드

DOI QR Code

Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline

고압 이산화탄소 파이프라인의 감압거동 특성에 관한 수치해석적 연구

  • Huh, Cheol (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Cho, Meang Ik (Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering) ;
  • Kang, Seong Gil (Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering)
  • 허철 (한국해양대학교 해양과학기술융합학과) ;
  • 조맹익 (선박해양플랜트연구소 해양CCS연구단) ;
  • 강성길 (선박해양플랜트연구소 해양CCS연구단)
  • Received : 2015.12.11
  • Accepted : 2016.02.17
  • Published : 2016.02.25

Abstract

To inject huge amount of $CO_2$ for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of $CO_2$ pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure $CO_2$ pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.

대용량의 $CO_2$를 지중에 저장하기 위한 CCS(Carbon Capture and Storage)는 고압의 파이프라인 수송공정을 수반한다. 또한, 사고 및 유지보수와 같은 비정상상태가 발생할 경우 고압의 $CO_2$를 대기 중으로 방출시키는 감압공정이 필요하다. 본 연구에서는 고압 $CO_2$ 파이프라인에서의 감압현상을 수치해석적 방법을 이용하여 분석하였다. 수치계산 결과를 실험데이터와 비교분석함으로써 수치해석의 예측 능력을 검증하였다. 수치모델이 기체-액체 혼합 구간에서의 2상 감압현상을 잘 예측하였다. 그러나 초임계 액체 단상 감압과 기체 단상 감압현상에 대해서는 온도변화 등을 예측하는데 한계가 있음을 밝혔다.

Keywords

References

  1. Amstrong, K. and Allason, D., 2014, "2" NB Shocktube Releases of Dense Phase $CO_2$", Report No. 14616, DNV GL.
  2. Brown, S., Martynov, S., Mahgerefteh, H., Chen, S. and Zhang, Y., 2014, "Modelling the non-equilibrium two-phase flow during depressurization of $CO_2$ pipeline", Int. J. Greenhouse Gas Control, Vol. 30, 9-18. https://doi.org/10.1016/j.ijggc.2014.08.013
  3. Calsep, 2015, "PVTSim Technical Overview".
  4. Cho, M.I., Huh, C., Jung, J.Y., Baek, J.H. and Kang, S.G., 2012, "Experimental study on N2 impurity effect in the pressure drop during $CO_2$ mixture transportation", J. Korean Soc. Mar. Environ. Eng., Vol. 5, 67-75.
  5. Clausen, S., Oosterkamp, A. and Strom, K.L., 2012, "Depressurization of a 50 km long 24 inches $CO_2$ pipeline", Energy Procedia, Vol. 23, 256-265. https://doi.org/10.1016/j.egypro.2012.06.044
  6. CO2PIPETRANS, 2015, https://www.dnvgl.com/oilgas/innovation-development/joint-industry-projects/co2pipetrans.html, DNVGL.
  7. de Koeijer G., Borch, J.H., Drescher, M., Li, H., Wilhelmsen, O. and Jakobsen, J., 2011, "$CO_2$ transport - depressurization, heat transfer and impurities", Energy Procedia, Vol. 4, 3008-3015. https://doi.org/10.1016/j.egypro.2011.02.211
  8. Eirik. S.T., 2013, "Modeling of transient $CO_2$ flow in pipelines and wells", Master's thesis, NTNU.
  9. Huh, C., Kang, S.G. and Cho, M.I., 2010, "$CO_2$ transport for CCS application in Republic of Korea", J. Korean Soc. Mar. Environ. Eng., Vol. 13, 18-29.
  10. Huh, C., Cho, M.I., Hong, S. and Kang, S.G., 2014, "Effect of impurities on depressurization of $CO_2$ pipeline transport", Energy Procedia, Vol. 63, 2583-2588. https://doi.org/10.1016/j.egypro.2014.11.280
  11. Infochem, 2014, "User Guide for Multiflash for Windows".
  12. Munkejord, S.T. and Hammerk, M., 2015, "Depressurization of $CO_2$-rich mixtures in pipes: Two-phase flow modelling and comparison with experiments", Int. J. Greenhouse Gas Control, Vol. 37, 398-411. https://doi.org/10.1016/j.ijggc.2015.03.029
  13. Schlumberger, 2014, "OLGA version 2014.1 User Manual".
  14. Tu, R., Xie, Q., Yi, J., Li, K., Zhou, X. and Jiang, X., 2014, "An experimental study on the leakage process of high pressure $CO_2$ from a pipeline transport system", Greenhouse Gas Science and Technology, Vol. 4, 777-784. https://doi.org/10.1002/ghg.1423
  15. Vree, B., Ahmad, M., Buit, L. and Florisson, O., 2015, "Rapid depressurization of a $CO_2$ pipeline - an experimental study", Int. J. Greenhouse Gas Control, Vol. 41, 41-49. https://doi.org/10.1016/j.ijggc.2015.06.011

Cited by

  1. Numerical Analysis of CO2 Behavior in the Subsea Pipeline, Topside and Wellbore With Reservoir Pressure Increase over the Injection Period vol.19, pp.4, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.4.286
  2. Instability Analysis of Supercritical CO2 during Transportation and Injection in Carbon Capture and Storage Systems vol.11, pp.8, 2018, https://doi.org/10.3390/en11082040