DOI QR코드

DOI QR Code

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Black 1 Using Coconut Shell-Based Granular Activated Carbon

야자각계 입상 활성탄의 Acid Black 1 염료 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구

  • Lee, Dong-Chang (Division of Chemical Engineering, Kongju National University) ;
  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University)
  • 이동창 (공주대학교 화학공학부) ;
  • 이종집 (공주대학교 화학공학부)
  • Received : 2016.09.01
  • Accepted : 2016.10.03
  • Published : 2016.12.10

Abstract

In this study, the adsorption behavior from aqueous solution as well as kinetic and thermodynamic parameters of Acid Black 1 were investigated through batch reaction using coconut shell based granular steam activated carbon. The effects of various adsorption parameters such as pH, initial concentration, contact time, temperature were studied. To confirm the effect of pH, pHpzc measurements were analyzed followed by measuring removal efficiencies of Acid Black 1 at the pH range from 3 to 11. Experimental equilibrium adsorption data were fitted using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich adsorption isotherm. The conformity of adsorption reaction for pseudo first and second order model were evaluated through kinetic analysis. Values of enthalpy change and activation energy were also investigated through thermodynamic analysis and it was confirmed that the adsorption process was endothermic. The spontaneity of adsorption process was evaluated using the values of entropy and Gibbs free energy changes.

본 연구는 흡착제로 야자각계 수증기 활성화 입상 활성탄을 사용하여 Acid Black 1 수용액에서의 흡착 거동과 동역학적, 열역학적 파라미터에 대해 회분식 반응을 통해 조사하였다. 흡착변수로는 pH, 초기농도, 접촉시간, 온도를 사용하였다. pH에 대한 영향을 조사하기 위해 pHpzc 값을 분석한 뒤 pH 3-11 범위에서 제거율을 조사하였다. 흡착평형자료로부터 Langmuir, Freundlich, Temkin, Dubinin-Radushkevich 등온 흡착식에 대한 적합성을 평가하였다. 흡착공정에 대한 동역학적 해석을 통해 유사 1차반응식과 유사 2차반응식에 대한 흡착반응의 일치도를 평가하였다. 열역학적 해석을 통해 엔탈피 변화 값과 활성화에너지 값을 조사하여 이를 통해 흡착공정이 흡열반응인지를 확인하였으며, 엔트로피 변화 값과 자유에너지 값을 통해 흡착공정의 자발성을 확인하였다.

Keywords

References

  1. M. Koushaa, E. Daneshvara, H. Dopeikara, D. Taghavia, and A. Bhatnagarb, Box-Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae, Chem. Eng. J., 179, 158-168 (2012). https://doi.org/10.1016/j.cej.2011.10.073
  2. A. Bhatnagar and A. K. Jain, A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water, J. Colloid Interface Sci., 281, 49-55 (2005). https://doi.org/10.1016/j.jcis.2004.08.076
  3. V. K. Garg, M. Amita, R. Kumar, and R. Gupta, Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste, Dyes Pigm., 63, 243-250 (2004). https://doi.org/10.1016/j.dyepig.2004.03.005
  4. E. Hoseinzadeh, A. R. Rahmanie, G. Asgari, G. Mckay, and R. Dehghanian, Adsorption of Acid Black 1 by using activated carbon prepared from scrap tires Kinetic and equilibrium studies, J. Sci. Ind. Res., 71, 682-689 (2012).
  5. K. Mahapatra, D. S. Ramteke, and L. J. Paliwal, Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal, J. Anal. Appl. Pyrolysis, 95, 1-8 (2012). https://doi.org/10.1016/j.jaap.2012.01.012
  6. D. Sun, X. Zhang, Y. Wu, and X. Liu, Adsorption of anionic dyes from aqueous solution on fly ash, J. Hazard. Mater., 181, 335-342 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.015
  7. M. Sankar, G. Sekaran, S. Sadulla and T. Ramasami, Removal of diazo and triphenylmethane dyes from aqueous solutions through an adsorption process, J. Chem. Technol. Biotechnol., 74, 337-344 (1999). https://doi.org/10.1002/(SICI)1097-4660(199904)74:4<337::AID-JCTB39>3.0.CO;2-U
  8. J. J. Lee, Adsorption equilibrium, kinetics and thermodynamic parameters studies of Bismarck Brown R dye adsorption on granular activated carbon, Appl. Chem. Eng., 24 327-332 (2013).
  9. P. C. C. Faria, J. J. M. Orfao, and M. F. R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 38, 2043-2052 (2004). https://doi.org/10.1016/j.watres.2004.01.034
  10. J. J. Lee, Equilibrium, kinetics and thermodynamic parameters studies of Acid Yellow 14 using activated carbon, Korean Chem. Eng. Res., 54(2), 255-261 (2016). https://doi.org/10.9713/kcer.2016.54.2.255
  11. C. Saka, BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with $ZnCl_2$, J. Anal. Appl. Pyrolysis, 95, 21-24 (2012). https://doi.org/10.1016/j.jaap.2011.12.020
  12. Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh, and G. M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm., 77, 16-23 (2008). https://doi.org/10.1016/j.dyepig.2007.03.001
  13. Y. S. Li, C. S. Chiou, and Y. S. Shieh, Adsorption of Acid Black 1 wastewater by basic oxygen furnace slag, Bull. Environ. Contam. Toxicol., 64, 659-665 (2000). https://doi.org/10.1007/s001280000054
  14. J. J. Lee, Isotherms, kinetics and thermodynamic parameters studies of new fuchsin dye adsorption on granular activated carbon, Appl. Chem. Eng., 25, 632-638 (2014). https://doi.org/10.14478/ace.2014.1120
  15. T. W. Weber and R. K. Chakrabarti, Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions, Ind. Chem. Eng. Fund., 5, 212-223 (1996).
  16. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk, J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  17. P. Sivakumar and P. N. Palanisamy, Adsorption studies of basic red 29 by a non conventional activated carbon prepared from euphorbia antiquorum L, Int. J. Chem. Tech. Res., 1, 502-510 (2009).
  18. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Removal of PCBs from wastewater using fly ash, Chemosphere., 53(6), 655-665 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  19. M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester, UK (1981).
  20. C. Ijabemi, M. Baek, and D. Kim, Monomorilonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions, J. Hazard. Mater., 166, 538-546 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.085
  21. M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. zmetin, Adsorption kinetics of maxilon blue GRL onto spiolite from aqueous solutions, Chem. Eng. J., 124, 89-101 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  22. X. Peng, X. Hu, D. Fu, L. Frank, and Y. Lam, Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon, Appl. Surf. Sci., 294, 71-80 (2014). https://doi.org/10.1016/j.apsusc.2013.11.157
  23. A. Esmaeli, M. Jokar, M. Kousha, E. Daneshvar, H. Zilouei, and K. Karimi, Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum: Ochrophyta), Chem. Eng. J., 217, 329-336 (2013). https://doi.org/10.1016/j.cej.2012.11.038
  24. E. Daneshvar, M. Kousha, M. S. Sohrabi, A. Khataee, and A. Converti, Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: Isotherm, kinetic and thermodynamic studies, Chem. Eng. J., 195, 297-306 (2012).
  25. M. Yazdani, H. Bahrami, and M. Arami, Preparation and characterization of chitosan/feldspar biohybrid as an adsorbent: optimization of adsorption process via response surface modeling chitosan/feldspar, Sci. World J., 2014, 1-13 (2014).

Cited by

  1. 활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열 vol.28, pp.2, 2016, https://doi.org/10.14478/ace.2016.1132
  2. 활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구 vol.30, pp.2, 2016, https://doi.org/10.14478/ace.2019.1001
  3. 석탄계 입상활성탄에 의한 Reactive Red 120의 흡착 특성 : 등온선, 동력학 및 열역학 파라미터 vol.31, pp.2, 2016, https://doi.org/10.14478/ace.2020.1007