DOI QR코드

DOI QR Code

Establishment of Safe Management Guideline Based on Uptake Pattern of Pesticide Residue from Soil by Radish

토양잔류 농약의 무 흡수양상 및 토양 안전관리기준 설정

  • Hwang, Jeong-In (School of Applied Biosciences, Kyungpook National University) ;
  • Kwak, Se-Yeon (School of Applied Biosciences, Kyungpook National University) ;
  • Lee, Sang-Hyeob (School of Applied Biosciences, Kyungpook National University) ;
  • Kang, Min-Su (School of Applied Biosciences, Kyungpook National University) ;
  • Ryu, Jun-Sang (School of Applied Biosciences, Kyungpook National University) ;
  • Kang, Ja-Gun (School of Applied Biosciences, Kyungpook National University) ;
  • Jung, Hye-Hyeon (School of Applied Biosciences, Kyungpook National University) ;
  • Hong, Sung-Hyeon (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Jang-Eok (School of Applied Biosciences, Kyungpook National University)
  • 황정인 (경북대학교 응용생명과학부) ;
  • 곽세연 (경북대학교 응용생명과학부) ;
  • 이상협 (경북대학교 응용생명과학부) ;
  • 강민수 (경북대학교 응용생명과학부) ;
  • 류준상 (경북대학교 응용생명과학부) ;
  • 강자군 (경북대학교 응용생명과학부) ;
  • 정혜현 (경북대학교 응용생명과학부) ;
  • 홍성현 (경북대학교 응용생명과학부) ;
  • 김장억 (경북대학교 응용생명과학부)
  • Received : 2016.10.28
  • Accepted : 2016.11.10
  • Published : 2016.12.31

Abstract

BACKGROUND: Uptake patterns of ${\alpha}$-, ${\beta}$-isomers and sulfate metabolite of endosulfan (ED) by radishes grown in treated soils with ED concentrations of 2 and 10 mg/kg were investigated to establish soil management guidelines for ensuring the safety of radishes from ED residues. METHODS AND RESULTS: All samples of soils and radish plants separated into shoot and root parts were analyzed for ED residues using a gas-chromatography mass spectrophotometer, and the results were used to calculate the bioconcentration factor (BCF), indicating the ratio of ED concentrations between radishes and soils. During the experimental period, uptake and distribution rates of ED-sulfate in radishes were the highest, followed by ${\alpha}$- and ${\beta}$-ED. The BCF values to initial ED concentrations in soils were greater for root parts (0.0077 to 0.2345) than for shoot parts (0.0002 to 0.0429) and used to obtain regression equations by time. Long-term BCFs estimated by the obtained equations ($R^2$ of 0.86 to 1.00) were evaluated with the maximum residue limit (0.1 mg/kg) of ED for radishes, in order to suggest safe management guidelines of ED for radish-cultivating soils. CONCLUSION: Suggested guidelines showed the significant dependency on duration for radish cultivation and exposed concentration of ED in soil.

토양에 잔류된 엔도설판(ED) 살충제의 ${\alpha}$, ${\beta}$ 이성질체 및 sulfate 대사체의 무 흡수이행 양상을 조사하고 무 재배지 토양에 대한 ED의 안전관리기준을 설정하기 위하여 생물농축계수(BCF)를 산출하였다. 토양은 2 및 10 mg/kg의 농도가 되도록 처리하였으며 각각의 처리구에 파종한 무를 40일부터 70일까지 재배 후 10일 간격으로 수확하고 수확된 무는 지상부와 지하부로 나누어 ED의 잔류분석을 실시하였다. 토양으로부터 무 한 개체로 흡수된 total ED (이성질체와 대사체의 합) 잔류량에 대해 ED-sulfate가 48.5-100.0%로 가장 많이 분포하였고 그 다음으로 ${\alpha}$- (0.0-35.2%) 및 ${\beta}$-ED (0.0-16.4%) 순이었다. ED 잔류분석 결과를 바탕으로 무와 토양사이에 total ED의 잔류량 비로써 BCF를 산출하였으며 그 값은 무 지상부에 대해 0.0002-0.0429, 지하부에 대해 0.0077-0.2345로 지하부의 BCF 값들이 더 컸다. 이 값들로부터 얻어진 회귀방정식( $R^2$ >0.86)을 이용하여 장기적인 BCF 값들을 예측하고 무에 대한 ED의 MRL 값인 0.1 mg/kg과 비교하여 무 재배지 토양 중 ED의 안전관리기준을 산출하고 발생할 수 있는 오차를 고려한 결과, 무와 무청 둘 다에 대해 2.0 mg/kg이었다.

Keywords

References

  1. Anderson, J. J., Bookhart, S. W., Clark, J. M., Jernberg, K. M., Kingston, C. K., Snyder, N., Wallick, K., & Watson, L. J. (2013). Uptake of cyantraniliprole into tomato fruit and foliage under hydroponic conditions:Application to calibration of a plant/soil uptake model. Journal of Agricultural and Food Chemistry, 61(38), 9027-9035. https://doi.org/10.1021/jf4025757
  2. Arnot, J. A., & Gobas, F. A. P. C. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14(4), 257-297. https://doi.org/10.1139/a06-005
  3. Awasthi, N., Ahuja, R., & Kurmar, A. (2000). Factors influencing the degradation of soil-applied endosulfan isomers. Soil Biology and Biochemistry, 32(11), 1697-1705. https://doi.org/10.1016/S0038-0717(00)00087-0
  4. Bakouri, H. E., Quassini, A., Agudo, J. M., & Garcia, J. U. (2007). Endosulfan sulfate mobility in soil columns and pesticide pollution of groundwater in northwest Morocco. Water Environment Research, 79(13), 2578-2584. https://doi.org/10.2175/106143007X184528
  5. Briggs, G. G., Bromilow, R. H., & Evans, A. A. (1982). Relationship between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pesticide Management Science, 13(5), 495-504. https://doi.org/10.1002/ps.2780130506
  6. Burken, J. G., & Schnoor, J. L. (1998). Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environmental Science and Technology, 32(21), 3379-3385. https://doi.org/10.1021/es9706817
  7. Burns, M., Crossan, A. N., Kennedy, I. R., & Rose, M. T. (2008). Sorption and desorption of endosulfan sulfate and diuron to composted cotton gin trash. Journal of Agricultural and Food Chemistry, 56(13), 5260-5265. https://doi.org/10.1021/jf703631j
  8. Esteve-Turrillas, F. Scott, W. C., Pastor, A., & Dean, J. R. (2005). Uptake and bioavailability of persistent organic pollutants by plants grown contaminated soil. Journal of Environmental Monitoring, 7(11), 1093-1098. https://doi.org/10.1039/b507414b
  9. Hsu, F. C., Marxmiller, R. L., & Yang, A. Y. S. (1990). Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiology, 93(4), 1573-1578. https://doi.org/10.1104/pp.93.4.1573
  10. Hwang, J. I., Lee, S. E., & Kim, J. E. (2014a). Interpretation and estimation for dynamic mobility of chlorpyrifos in soils containing different organic matters. Environmental Geochemistry and Healty, 37(6), 1017-1027.
  11. Hwang, J. I., & Kim, J. E. (2014b). Distribution patterns of organophosphorous insecticide chlorpyrifos absorbed from soil into cucumber. The Korean Journal of Pesticide Science, 18(3), 148-155. https://doi.org/10.7585/kjps.2014.18.3.148
  12. Hwang, J. I., Lee, S. E., & Kim, J. E. (2015). Plant uptake and distribution of endosulfan and its sulfate metabolite persisted in soil. Plos One, 10(11), DOI: 10.1371/journal.pone.0141728.
  13. Kataoka, R., & Takagi, K. (2013). Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate. Applied Microbiology and Biotechnology, 97, 3285-3292. https://doi.org/10.1007/s00253-013-4774-4
  14. KCPA (Korea Crop Protection Association). (2009). Agrochemical Year Book, pp. 146-147, Moonseon, Korea.
  15. KCPA (Korea Crop Protection Association). (2013). Agrochemical Year Book, pp. 178-179, Moonseon, Korea.
  16. Macbean, C. (2012). The Pesticide Manual, pp. 414-415, British Crop Production Council, UK.
  17. Park, B. J., Lee, B. M., Kim, C. S., Park, K. H., Kim, J. H., Kwon, H. Y., Park, S. W., Choi, G. H., & Lim, S. J. (2013). Long-term monitoring of pesticide residues in arable soils in Korea. The Korean Journal of Pesticide Science, 17(4), 283-292. https://doi.org/10.7585/kjps.2013.17.4.283
  18. RDA (Rural Development Administration) (2000). Analytical Method for Soil and Plant, pp. 103-130, Sammi, Korea.
  19. Sethunathan, N., Megharaj, M., Chen, Z. L., Williams, B. D., Lewis, G., & Naidu, R. (2004). Algal degradation of a known endocrine disrupting insecticide, ${\alpha}$-Endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. Journal of Agricultural and Food Chemistry, 52(10), 3030-3035. https://doi.org/10.1021/jf035173x

Cited by

  1. Plant Uptake and Residual Patterns of Insecticide Dinotefuran by Radish vol.21, pp.3, 2017, https://doi.org/10.7585/kjps.2017.21.3.233
  2. Plant uptake potential of endosulfan from soil by carrot and spinach vol.60, pp.4, 2017, https://doi.org/10.3839/jabc.2017.053
  3. Endosulfan Plant Uptake Suppression Effect on Char Amendment in Oriental Radish vol.229, pp.1, 2018, https://doi.org/10.1007/s11270-017-3677-x
  4. Investigation of the Bioconcentration Factor of Endosulfan for Rice from Soil vol.22, pp.1, 2018, https://doi.org/10.7585/kjps.2018.22.1.25