DOI QR코드

DOI QR Code

The Study on the Countermeasure Plans about Leakage, Explosion and Fire Accidents of Atmospheric Storage Tank

옥외저장탱크 누출, 폭발 및 화재사고 대응방안에 관한 고찰

  • Received : 2016.10.06
  • Accepted : 2016.10.30
  • Published : 2016.12.31

Abstract

A crude oil leakage from a large atmospheric storage tank occurred on 4 April 2014 at 14:50 in Ulsan City, while storing the crude oil in the tank. Emergency Rescue Control Group was deployed in the scene. The company, Fire Service Headquarters and associated agencies got together in Command Post (CP) for discussing an effective corresponding strategy. Many solution plans were drafted in the debate such as power down, stopping the facilities, checking the density of inflammable gas, suppressing oil evaporation, moving the leaked crude oil to a nearby tank and a processing plant and avoiding marine pollution. All the solutions were carried out in cooperation with several agencies and partners. The oil leakage accident was successfully settled up within the process of responding, The Fire Service Headquarters and the company thought that the most important thing was the suppression of oil evaporation and the elimination of ignition source. With Fire Service Headquarters and several agencies' every effort, an explosion and a fire didn't occurred in the scene. This study suggest the improvement of the operating system in Emergency Rescue Control Group in case of petroleum leakage, explosion and fire accidents of atmospheric storage tank, different from a ordinary disaster. Assuming that petroleum leakage in atmospheric storage tank develop the explosion and fire accidents, the spreading speed of the flame and the burning time was experimented and compared with each other. Furthermore, this study concentrates on the effective field response plan prepared for the afterward explosion and fire accidents from petroleum leak in a storage tank, with the database experimented and analyzed in accordance with the angle of radiation in the foam nozzle and the pressure of pumping in a fire engine.

지난 2014.4.4.(금)14:50, 울산소재 대형 옥외저장탱크에 원유 충전 중 누출사고가 발생하여 사고현장에 긴급구조통제단이 가동됐다. 사고업체, 소방기관 및 유관기관이 지휘소에 모여 대응과 수습방안을 논의한 뒤 전원차단 및 시설작동금지, 가스농도 측정, 유증기 발생 억제, 누출 원유를 타탱크와 공정과정으로 이송, 해양오염 방지조치 등의 협업체계를 구축하여 수습하였다. 이 수습과정에서 유증기 발생방지와 점화원 차단을 가장 중시하여 조치함으로써 사고업체와 소방기관이 가장 우려했던 폭발과 화재사고는 발생하지 않았다. 이에 본 연구는 일반적인 재난의 긴급구조통제단과는 달리 운영해야 할 옥외탱크의 유류 누출, 폭발 및 화재 시의 긴급구조통제단 운영체계개선을 제시하고, 옥외탱크 유류 누출로 인한 폭발과 화재사고로 전이했을 경우를 가정한 방유제 바닥 종류에 따른 화염 확산속도와 연소시간을 실험 비교하였다. 또한, 소방차 포 노즐의 방사각도와 펌프압력에 따른 방사거리와 포의 도포면적을 실험 분석하여, 이후 옥외저장탱크의 유류 누출로 인한 폭발과 화재 시를 대비한 효과적인 현장대응과 수습방안을 제시하는 데 중점을 두었다.

Keywords

References

  1. S-Oil Co, "The Emergency Response Plan for Atmospheric Storage Tank and Staff Mission Planning" (2015).
  2. Ulsan Fire Department, "Chemical Incident Preparedness and Field Correspondence Manuals in Ulsan Petrochemical Complex" (2015).
  3. Ulsan Fire Department, "The Study on the Safety Management of Atmospheric Hazardous Material Storage Tank" (2016).
  4. Gyeongnam Fire Academy, "The Burning Speed Test of Spilled Oil" (2016).
  5. Miryang Firestation, "The Reach and Coverage Test of Foam Discharging Due to Pressure" (2016).
  6. Ulsan Fire Department, "S-Oil Corporation Oil Leakage Whitepaper" (2015).