DOI QR코드

DOI QR Code

A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud

LIDAR를 이용한 삼차원 점군 데이터의 삼각망 구성 방법 및 샘플링에 따른 암반 불연속면 방향 검출에 관한 연구

  • 이수득 (서울대학교 공과대학 에너지시스템공학부) ;
  • 전석원 (서울대학교 공과대학 에너지시스템공학부)
  • Received : 2016.02.23
  • Accepted : 2016.02.25
  • Published : 2016.02.29

Abstract

In this study, a LIDAR laser scanner was used to scan a rock slope around Mt. Gwanak and to produce point cloud from which directional information of rock joint surfaces shall be extracted. It was analyzed using two different algorithms, i.e. Ball Pivoting and Wrap algorithm, and four sampling intervals, i.e. raw, 2, 5, and 10 cm. The results of Fuzzy K-mean clustering were analyzed on the stereonet. As a result, the Ball Pivoting and Wrap algorithms were considered suitable for extraction of rock surface orientation. In the case of 5 cm sampling interval, both triangulation algorithms extracted the most number of the patch and patched area.

본 연구는 LIDAR라고 불리는 레이져 스캐너를 이용하여 관악산 주변 암반 불연속면을 스캔하여 얻은 삼차원 점군 데이터로부터 삼각망을 구성하고 이로부터 암반 불연속면의 방향을 검출하는 내용을 다루고 있다. 각 불연속면의 방향정보를 획득하는 데 Ball Pivoting, Wrap 알고리즘 두 가지 방법을 사용하고 점군의 샘플링 간격을 원간격, 2, 5, 10 cm로 다운샘플링 하였을 때의 방향 검출 효율성을 확인하였고 각각으로부터 얻어지는 방향정보를 퍼지 K-평균 클러스터링 기법을 이용하여 평사투영망 위에서 비교 분석하였다. 투영방향에 의존적인 Delaunay 삼각망 구성방법보다 Ball Pivoting, Wrap 알고리즘이 암반 불연속면 정보 검출에 더 적합함을 확인하였고, 샘플링 간격이 5 cm일 때 Ball Pivoting, Wrap 알고리즘 모두 가장 많은 패치를 검출해내었고 또한 가장 넓은 패치들의 면적을 검출해냄을 확인하였다.

Keywords

References

  1. Abellan, A., Jaboyedoff, M., Oppikofer, T., Vilaplana, J.M., 2009, Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event, Natural Hazards and Earth System Science, Vol. 9, 365-372. https://doi.org/10.5194/nhess-9-365-2009
  2. Abellan, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J., 2014, Terrestrial laser scanning of rock slope instabilities, Earth Surface Processes and Landforms, Vol. 39, No. 1, 80-97. https://doi.org/10.1002/esp.3493
  3. B. Delaunay, 1934, Sur la sphere vide. A la memoire de Georges Voronoi, Bulletin de l'Academie des Sciences de l'URSS. Classe des sciences mathematiques et na, No. 6, 793-800.
  4. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G., 1999, The ball-pivoting algorithm for surface reconstruction, Visualization and Computer Graphics, Vol. 5, No. 4, 349-359. https://doi.org/10.1109/2945.817351
  5. Edelsbrunner, H., 2003, Surface reconstruction by wrapping finite sets in space, Descrete & Computational Geometry, Springer, Berlin, 379-404.
  6. Hammah, R. E., & Curran, J. H., 1998, Fuzzy Cluster Algorithm for the Automatic Identification of Joint Sets, International Journal of Rock Mechanics and Mining Sciences, Vol. 35, No. 7, pp. 889-905. https://doi.org/10.1016/S0148-9062(98)00011-4
  7. Jeong, C.Y., Park, H.D., 2003, DEM generation of rock slope using laser scanning and digital stereo photogrametry, Tunnel & Underground Space, Vol. 13, No. 3, 207-214.
  8. Jung, Y.B., Jeon, S., 2003, Fuzzy Clustering Method for the Identification of Joint Sets, Tunnel & Underground Space, Vol. 13, No. 4, pp. 294-303.
  9. Kasperski, J., Delacourt, C., Allemand, P., Potherat, P., Jaud, M., Varrel, E., 2010, Application of a Terrestrial Laser Scanner (TLS) to the study of the Sechilienne landslide (Isere France), Remote Sensing, Vol. 2, No. 12, 2785-2802. https://doi.org/10.3390/rs122785
  10. Kemeny, J., Turner, K., & Norton, B., 2006, LIDAR for rock mass characterization: hardware, software, accuracy and best-practices, Laser and Photogrammetric Methods for Rock Face Characterization, 49-62.
  11. Kim, C., Kemeny, J., Automatic extraction of fractures and their characteristics in rock masses by LIDAR system and the Split-FX software, Tunnel & Underground Space, Vol. 19, No. 1, 1-10.
  12. Lichti, D.D., Gordon, S.J., Stewart, M.P., 2002, Ground-based laser scanners: operation systems and applications, Geomatica, Vol. 56, No. 1, 21-33.
  13. Oh, S., 2011, Extraction of Rock Discontinuity Orientation by Laser Scanning Technique, Masters thesis, Seoul National University, 73p.
  14. Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M.H., Metzger, R., 2009, Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning, Natural Hazards and Earth System Science, Vol. 9, 1003-1019. https://doi.org/10.5194/nhess-9-1003-2009
  15. Park, S.H., Lee, S.G., Lee, B.K., Kim, C.H., 2015, A study on reliability of joint orientation measurements in rock slope using 3d laser scanner, Tunnel & Underground Space, Vol. 25, No. 1, 97-106. https://doi.org/10.7474/TUS.2015.25.1.097
  16. Rosser, N.J., Petley, D.N., Lim, M., Dunning, S.A., Allison, R.J., 2005, Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion, Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 38, No. 4, 363-375. https://doi.org/10.1144/1470-9236/05-008
  17. Schurch, P., Densmore, A.L., Rosser, N.J., Lim M., McArdell, B.W., 2011, Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel, Earth Surface Processes and Landforms, Vol. 36, 1847-1859. https://doi.org/10.1002/esp.2206
  18. Slob, S., Hack, R., Turner, A.K., 2002, An approach to automate discontinuity measurements of rock faces using laser scanning techniques, ISRM International Symposium on Rock Engineering for Mountainous Regions : EUROCK 2002, 87-94.
  19. Ulusay, R., Hudson, J.A., 2007, The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group, Ankara, p. 628.

Cited by

  1. Analysis of Blasting Overbreak using Stereo Photogrammetry in an Underground Mine vol.26, pp.5, 2016, https://doi.org/10.7474/TUS.2016.26.5.348