DOI QR코드

DOI QR Code

Optimal Manufacturing of Composite Wing Ribs in Solar-Powered UAVs: A Study

태양광 무인기 복합재 윙 리브 최적 제작 연구

  • Yang, Yongman (Korea Aerospace Research Institute) ;
  • Kim, Myungjun (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Jinsung (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Sooyong (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 양용만 (한국항공우주연구원) ;
  • 김명준 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김진성 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이수용 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2016.10.20
  • Accepted : 2016.12.13
  • Published : 2016.12.31

Abstract

In our preceding study, we reported that the use of light, composite-material wings in long-endurance Solar-Powered UAVs is a critical factor. Ribs are critical components of wings, which prevent buckling and torsion of the wing skin. This study was undertaken to design and manufacture optimal composite ribs. The ribs were manufactured by applying laminated-layer patterns and shapes, considering the anisotropic properties of the composite material. Through the finite element analysis using the MSC Patran/Nastran, the maximum load and the displacement shape were identified. Based on the study results measured by structural tests, we present an optimal design of ribs.

선행 연구 개발을 통하여 장기 체공 태양광 무인기 복합재 날개의 경량화는 매우 중요한 요소임을 확인하였다. 날개 외피의 좌굴 방지와 비틀림 방지 역할을 하는 구조물인 리브는 날개의 구성 요소 중에 필수적이다. 본 연구는 최적의 복합재 리브를 설계, 제작하기 위하여 복합소재의 이방성 특성을 고려한 다양한 적층 패턴 적용 및 형상에 대하여 리브를 제작하였고. MSC. Patran/Nastran을 이용한 유한요소 해석을 통하여 최대 하중 및 변위 형상을 확인하였으며, 구조 시험을 통하여 측정된 시험 결과를 바탕으로 최적의 리브를 제시하였다.

Keywords

References

  1. Y. M. Yang, J. S. Kim, I. Y. Ahn and S. Y. Lee "Experimental study on the optimum manufature to composite wing rib of a UAV" Proc. of SASE Spring Conference 2014, Jeju, Korea, May 2014.
  2. S. J. Hwang, S. G. Kim and Y. G. Lee "Developing High Altitude Long Endurance(HALE) Solar-powered Unmanned Aerial Vehicle(UAV)", Journal of The Society for Aerospace System Engineering, Vol.10, No.1, pp59-65, 2016.
  3. Development of High Performance Composites Process Technology (III), Korea Institute of Machinery & Materials, 1995.
  4. Y. M. Yang, "A study on manufacturing of light-weight composite UAV," Master Thesis, Korea Aerospace University, 2012.
  5. M. W. Lee, J. S. Bae, S. Y. Lee, S. J. Lee and B. I. Jeon, "One-Dimensional Beam Modeling of a Composite Rotor Blade" Journal of The Society for Aerospace System Engineering Vol.2 No.1, pp7-12, 2008.
  6. T. E. Noll, J. M.. Brown, M. E. Perez-Davis, S. D. Ishmael, G. C. Tiffany and M. Gaier, "Investigation of the Helios Prototype Aircraft Mishap. Volume I Mishap" of Mishap Report Jan 2004.
  7. J. H. Kwon, K. N. Qoo, C. O. Moon, J. S. Park, K. S. Woo, S. N. Jung, "Analysis of computational structure learned with NASTRAN" kyungmoon, 2004.
  8. H. S. Hwang, S. Heo, J. H. Kim and J. S. Bae "Aircraft design and manufacturing for UAV" Journal of The Society for Aerospace System Engineering, Vol.2 No.4, pp38-43, 2008.
  9. Ian Lea, Dan, Janice, "Sailplane Builder" of Notes p32-35, 1999.
  10. A. Spadoni and M. Ruzzene, "Numerrical and Experimental analysis of the static compliance of chiral truss-core airfoils", Journal of mechanics of Materials and Structures, Vol.2, No.5, 2007