DOI QR코드

DOI QR Code

A Comparative Study on the Applicability of CNT-coated Glass Fiber for Wind Blades

풍력 블레이드를 위한 CNT 코팅 유리섬유의 적용성에 대한 비교 연구

  • Jang, Hong-Kyu (Composite Structures & System Department, Composites Research Division, Korea Institute of Materials Science) ;
  • Kim, Young-Chul (Composite Structures & System Department, Composites Research Division, Korea Institute of Materials Science)
  • Received : 2016.10.31
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

This paper conducted the study on the electromagnetic and mechanical applicability of CNT-coated glass fiber for wind blades. Large-size wind blade has the serious pending problems to meet the target, such as interfering radar signals, increasing weights, and increasing repair costs. In this paper, we are suggesting the CNT-coated glass fiber in order to overcome these problems. First, the CNTs were strongly coated on the surfaces of glass fiber by suggested coating process, and the CNT-coated glass fiber/epoxy composites were fabricated by Va-RTM process. We designed and fabricated a radar absorbing structure using the CNT-coated glass fiber, which showed over 90% radar absorbing performance between 8.3 and 12.1 GHz frequency. In addition, we confirmed the improvement of mechanical properties on the strength and modulus of tensile, compressive, and in-plane shear.

본 논문에서는 복합재 풍력 블레이드를 위한 CNT 코팅 유리섬유의 전자기적/기계적 적용성에 대한 연구를 수행하였다. MW급 이상의 대형 복합재 블레이드는 민수용/군수용 레이더와의 신호간섭 문제로 인한 발전단지 위치선정 제약과 무게 증가에 따른 발전효율 저해, 구조적 건전성 부족에 따른 수리비용 증가의 당면과제를 안고 있다. 이에 본 연구에서는 이러한 문제를 극복하기 위한 방안으로 CNT 코팅 유리섬유를 제안하였다. 먼저 제안된 CNT 코팅 공정을 통해 유리섬유 표면에 CNT를 강력히 코팅하고, Va-RTM을 통해 CNT 코팅/유리섬유 에폭시 복합재를 제작하여 전자기적/기계적 물성을 평가하였다. 또한 전자파 흡수체 설계/제작 및 시험/평가를 통해 X-band의 8.3~12.1 GHZ에서 90% 이상 전자파 흡수성능을 가짐을 검증하였다. 이와 더불어 기계적 물성 시험/평가를 통해서 인장, 압축, 면내전단 강도/강성의 모든 기계적 물성이 향상됨을 확인하였다.

Keywords

References

  1. Sawin, J.L., Seyboth, K., and Sverrisson, F., Renewables 2016: Global Status Report, Renewable Energy Policy Network for the 21st Century, Paris, France, 2016.
  2. Vega, D.DL., Matthews, J.C.G., Norin, L., and Angulo, I., "Mitigation Techniques to Reduce the Impact of Wind Turbines on Radar Services," Energies, Vol. 6, 2013, pp. 2859-2873. https://doi.org/10.3390/en6062859
  3. Brondsted, P., Lilholt, H., and Lystrup, A., "Composite Materials for Wind Power Turbine Blades," Annual Review of Materials Research, Vol. 35, 2005, pp. 505-538. https://doi.org/10.1146/annurev.matsci.35.100303.110641
  4. Caithness Windfarm Information Forum, Summary of Wind Turbine Accident Data to September 2016, www.caithnesswindfarms.co.uk., 2016.
  5. Kim, J., and Lim, D., "Reduction of Radar Interference - Stealth Wind Blade Structure with Carbon Nanocomposite Sheets," Wind Energy, Vol. 17, No. 3, 2014, pp. 451-460. https://doi.org/10.1002/we.1587
  6. Jang, H.K., Choi, W.H., Kim, C.G., Kim, J.B., and Lim, D.W., "Manufacture and Characterization of Stealth Wind Turbine Blade with Periodic Patterns Surface for Reducing Radar Interference," Composites: Part B, Vol. 56, 2014, pp. 178-183. https://doi.org/10.1016/j.compositesb.2013.08.043
  7. Loos, M., Yang, J., Feke, D., and Manas-Zloczower, I., "Carbon Nanotube-reinforced Epoxy Composites for Wind Turbine Blades," Society of Plastics Engineers, Plastics Research Online, 2012.
  8. Qian, H., Greenhalgh, E.S., Shaffer, M.S.P., and Bismarck, A., "Carbon Nanotube-based Hierarchical Composites: A Review," Journal of Materials Chemistry, Vol. 20, 2010, pp. 4751-4762. https://doi.org/10.1039/c000041h
  9. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., and Schulte, K., "Carbon Nanotube-reinforced Epoxy-composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content," Composites Science and Technology, Vol. 64, 2004, pp. 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
  10. Kwon, D.J., Shin, P.S., Kim, J.H., Lee, H.I., Park, J.K., and Park, J.M., "Effects of Solvents-based Dilution Condition on CNT Dispersion in CNT/Epoxy Composites," Journal of the Korean Society for Composite Materials, Vol. 29, No. 4, 2016, pp. 125-131
  11. Shin, J.H., Jang, H.K., Choi, W.H., Song, T.H., Kim, C.G., and Lee, W.Y., "Numerical Analysis of the Complex Permittivity of MWNT added Epoxy Depending on Agglomeration Size," Journal of the Korean Society for Composite Materials, Vol. 27, No. 5, 2014, pp. 190-195.
  12. Jung, B.M., Yoon, S.H., Jang, H.K., and Kim, K.D., "Carbon Nanotube Coated Glass Fiber using Ionic Interaction and Their Thermoplastic Composites," Proceeding of 18th International Conference on Composite Structures, Lisbon, Portugal, Jun. 2015.
  13. Yoon, S.H., Kim, K.D., Jang, H.K., and Jung, B.M., "An Investigation on Mechanical Properties Improvement and Manufacturing Process Technology Development of Thermoplastic Composite using the CNT," Proceeding of Advances in Mechanics of Composite Materials and Structures, Seoul, Korea, Oct. 2015.
  14. Vinoy, K.J., Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, Norwell, USA, 1996.
  15. Kim, J.B., Lee, S.K., and Kim, C.G., "A Study on Carbon Nano Materials as Conductive Fillers for Microwave Absorbers," Journal of the Korean Society for Composite Materials, Vol. 19, No. 5, 2006, pp. 28-33.