DOI QR코드

DOI QR Code

Effect of Foaming Agent Content on the Apparent Density and Compressive Strength of Lightweight Geopolymers

발포제 함량에 따른 경량 다공성 지오폴리머의 밀도와 강도 특성

  • Lee, Sujeong (Korea Institute of Geoscience and Mineral Resources) ;
  • An, Eung-Mo (Department of Architecture Engineering, EO Construction Corporation) ;
  • Cho, Young-Hoon (Department of Resources Recycling, University of Science and Technology)
  • 이수정 (한국지질자원연구원 광물자원연구본부) ;
  • 안응모 ((주)이오종합건설 건축팀) ;
  • 조영훈 (과학기술연합대학원대학교 자원순환공학)
  • Received : 2016.09.06
  • Accepted : 2016.12.16
  • Published : 2016.12.30

Abstract

Lightweight geopolymers are more readily produced and give higher fire resistant performance than foam cement concrete. Lowering the density of solid geopolymers can be achieved by inducing chemical reactions that entrain gases to foam the geopolymer structure. This paper reports on the effects of adding different concentrations of aluminum powder on the properties of cellular structured geopolymers. The apparent density of lightweight geopolymers has a range from 0.7 to $1.2g/m^3$ with 0.025, 0.05 and 0.10 wt% of a foaming agent concentration, which corresponds to about 37~60 % of the apparent density, $1.96g/cm^3$, of solid geopolymers. The compressive strength of cellular structured geopolymers decreased to 6~18 % of the compressive strength, 45 MPa of solid geopolymers. The microstructure of geopolymers gel was equivalent for both solid and cellular structured geopolymers. The workability of geopolymers with polyprophylene fibers needs to be improved as in fiber-reinforced cement concrete. The lightweight geopolymers could be used as indoor wall tile or board due to fire resistance and incombustibility of geopolymers.

경량 지오폴리머는 경량 시멘트 콘크리트보다 단순한 공정으로 제조가 가능하고 탁월한 내열 성능까지 갖춘 재료이다. 고형 지오폴리머의 밀도는 발포제와 지오폴리머 배합물과의 화학반응으로 발생되는 가스가 기공을 형성함으로서 감소시킬 수 있기 때문이다. 본 논문에서는 다양한 함량의 알루미늄 분말을 첨가하여 다공성 지오폴리머의 특성에 어떤 영향을 주는지 살펴보고자 하였다. 경량 지오폴리머의 겉보기 밀도는 알루미늄 분말 함량이 0.025, 0.05, 0.10wt% 범위에서 0.7에서 $1.2g/m^3$로 나타났는데 이는 고형 지오폴리머의 겉보기 밀도 값 $1.96g/cm^3$의 약 37~60%에 해당하였다. 경량 다공성 지오폴리머의 압축강도는 고형 지오폴리머의 압축강도 45MPa의 6~18%에 불과하였다. 고형 지오폴리머와 경량 지오폴리머 겔의 미세조직 형상은 유사하였다. 폴리프로필렌 섬유를 첨가한 지오폴리머 배합물의 작업성은 섬유 보강 시멘트 콘크리트에서와 마찬가지로 개선될 필요가 있다. 경량 다공성 지오폴리머는 현무암과 유사한 외관뿐만 아니라 뛰어난 내열 성능을 갖기 때문에 타일이나 보드 등 건축용 내장재로서의 활용 가능성이 높다고 본다.

Keywords

References

  1. An, E.M., Cho, Y.H., Chon, C.M., Lee, D.G., Lee, S.J. (2015). Synthesizing and assessing fire-resistant geopolymer from rejected fly ash, Journal of the Korean Ceramic Society, 52(4), 253-263. https://doi.org/10.4191/kcers.2015.52.4.253
  2. Bell, J.L., Kriven, W.M. (2009). Preparation of ceramic foams from metakaolin-based geopolymer gels. Developments in strategic materials: Ceramic engineering and science proceedings, John Wiley & Sons, Inc., 29(10), 96-111.
  3. Cho, Y.H., An, E.M., Lee, S.J., Chon, C.M., Kim, D.J. (2016). Influence of fine aggregate properties on unhardened geopolymer concrete, Journal of the Korean Recycled Construction Resources institute, 4(2), 101-111 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.2.101
  4. Choi, Y.J., Jang, B.S., Kim, J.W., Kim, Y.T., Kim, W.J. (2003). A study for development of artificial light-weight aggregate concrete using EAF dust, clay, Journal of the Korea Concrete Institute, 31-34 [in Korean].
  5. Criado, M., Palomo, A., Fernandez-Jimenez, A., Banfill, P.F.G. (2009). Alkali activated fly ash: effect of admixtures on paste rheology, Rheologica Acta, 48(4), 447-455. https://doi.org/10.1007/s00397-008-0345-5
  6. Han, K.B. (2005). Current state of lightweight aggregate concrete and future perspective for artificial lightweight aggregate production, Korea Construction Safety Association, 33, 34-37 [in Korean].
  7. Hardjito, D., Rangan, B.V. (2005). Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete, Research Report GC1, Faculty of Engineering, Curtin University of Technology, Perth.
  8. Jiting, X., Obada, K. (2016). Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers, Construction and Building Materials, 122, 36-42. https://doi.org/10.1016/j.conbuildmat.2016.06.067
  9. Kang, S.G. (2009). Dependence of physical properties of artificial lightweight aggregates upon a flux and a bloating agent addition, Journal of the Korean Crystal Growth and Crystal Technology, 19(1), 48-53 [in Korean].
  10. Kim, Y.T., Ryu, Y.G., Jang, C.S., Lee, K.G., Kang, S.G., Kim, J.H. (2009). A study on the black core formation of artificial lightweight aggregates at various sintering atmospheres, Journal of the Korean Crystal Growth and Crystal Technology, 19(6), 318-323 [in Korean].
  11. Kwon, Y.J., Kim, Y.T., Lee, K.G., Kim, Y.J., Kang, S.G., Kim, J.H., Park, M.S. (2001). Lightweight aggregate bloating mechanism of clay/incinerated ash/additive system, Journal of the the Korean Ceramic Society, 38(9), 811-816 [in Korean].
  12. Oh, B.H., Uhm, J.Y., Lee, S.M. (1987). Experimental study on the mechanical properties of high strength lightweight concrete, Korea Ready Mixed Concrete Industry Association, 9(13), 46-60 [in Korean].
  13. Pacheco-Torgal, F., Moura, D., Ding, Y., Jalali, S. (2011). Composition, strength and workability of alkali-activated metakaolin based mortars, Construction and Building Materials, 25(9), 3732-3745. https://doi.org/10.1016/j.conbuildmat.2011.04.017
  14. Prud'Homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., Arrii-Clacens, S., Clacens, J.M., Rossignol, S. (2010). Silica fume as porogent agent in geo-materials at low temperature, Journal of the European Ceramic Society, 30(7), 1641-1648. https://doi.org/10.1016/j.jeurceramsoc.2010.01.014
  15. Rickard, W.D.A., van Riessen, A. (2014). Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire, Cement and Concrete Composites, 48, 75-82. https://doi.org/10.1016/j.cemconcomp.2013.09.002
  16. Rickard, W., Vickers, L., van Riessen, A. (2012). Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions, Applied Clay Science, 73, 71-77.
  17. Svingala, F., Varela, B. (2009). Alkali Activated Aerogels. Mechanical Properties and Performance of Engineering Ceramics and Composites IV, John Wiley & Sons, Inc., 325-333.
  18. Tang, S.W., Chen, E., Shato, H.Y., Li, Z.J. (2015). A fractal approach to determine thermal conductivity in cement pastes, Construction and Building Materials, 74, 73-82. https://doi.org/10.1016/j.conbuildmat.2014.10.016
  19. Vickers, L., van Riessen, A., Rickard, W.D.A. (2015). Fire-resistant geopolymers - Role of fibres and fillers to enhance thermal properties, Springer.
  20. Williams, R.P., van Riessen, A. (2010). Determination of the reactive component fly ashes for geopolymer production using XRF and XRD, Fuel, 89, 3682-3692.
  21. Xie, J., Kayali, O. (2016). Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers, Construction and Building Materials, 122, 36-42. https://doi.org/10.1016/j.conbuildmat.2016.06.067
  22. Yoon, S., Kim, J.B., Jeong, Y. (2010). Experimental study of manufacturing artificial lightweight aggregates using industrial wastes, Journal of the Korea Concrete Institute, 22(1), 247-248 [in Korean]. https://doi.org/10.4334/JKCI.2010.22.2.247
  23. Zeiml, M., Leithner, D., Lackner, R., Mang, H.A. (2006). How do polypropylene fibers improve the spalling behavior of in-situ concrete?, Cement and Concrete Research, 36(5), 929-942. https://doi.org/10.1016/j.cemconres.2005.12.018
  24. Zhao, Y., Ye, J., Lu, X., Liu, M., Lin, Y., Gong, W., Ning, G. (2010). Preparation of sintered foam materials by alkali-activated coal fly ash, Journal of Hazard Materials, 174(1), 108-112. https://doi.org/10.1016/j.jhazmat.2009.09.023