DOI QR코드

DOI QR Code

Effect of Properties of Fly-ashes on the Characteristics of Fly-ash Mortars

플라이애시 종류에 따른 플라이애시 모르타르의 특성에 대한 연구

  • 김주형 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 박병선 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 정상화 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 최영철 (한국건설생활환경시험연구원 첨단건설재료센터)
  • Received : 2016.11.28
  • Accepted : 2016.12.15
  • Published : 2016.12.30

Abstract

Recently, a large number of researches about concrete containing high volume fly-ash(HVFA) have been carried to obtain carbon dioxide reduction, resource recycle and durable option in concrete industry. The quality of fly-ash such as chemical composition and fineness has high variability due to the differences of used fuels, operation condition in power plant. The aim of this study is to investigate the performances of fly-ash cement mortar containing different type of fly-ashes. The basic analysis of fly ash such as chemical composition, SEM image analysis were performed. Many mortar specimens were fabricated to evaluate the properties (compressive strength, drying shrinkage and carbonation) of mortar with various fly ash. From the test results, the quality of each fly ash must be considered and fully weighted in fly ash concrete.

최근 온실가스 저감 및 자원 재활용 등의 목적으로 플라이애시를 대량으로 사용하기 위한 연구가 활발히 진행되어오고 있다. 하지만, 플라이애시의 경우 생산 조건에 따른 품질 변동성이 크기 때문에 레드믹스트 콘크리트로의 대량 활용에 어려움이 있다. 본 연구에서는 국내 8개 화력발전소에서 생상되는 플라이애시를 대상으로 이를 이용한 플라이애시 모르타르에 대한 성능평가에 대한 연구를 수행하였다. 이를 위해 플라이애시에 대한 화학분석 등의 기초물성을 분석하였으며, 이를 활용한 플라이애시 모르타르에 대한 응결, 흐름, 압축강도 발현, 건조수축 및 탄산화 특성을 분석하였다. 각 화력발전소에서 생산된 플라이애시는 사용 연료 및 연소 조건 등의 상이에 의해 플라이애시의 구성 성분과 형상이 크게 다르게 나타났으며, 이러한 이유로 플라이애시 모르타르의 응결, 흐름, 압축강도, 건조수축, 탄산화에 대한 특성에 대한 변동성이 나타났다.

Keywords

References

  1. Antiohos, S., Tsimas, S. (2005). Investigating the role of reactive silica in the hydration mechanisms of high-calcium fly ash/cement systems, Cement and Concrete Composites, 27(2), 171-181. https://doi.org/10.1016/j.cemconcomp.2004.02.004
  2. Baert, G., Hoste, S., De Schutter, G., De Belie, N. (2008). Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry, Journal of Thermal Analysis and Calorimetry, 94, 485-492. https://doi.org/10.1007/s10973-007-8787-z
  3. Bentz, D.P. (2006). Influence of water-to-cement ratio on hydration kinetics: simple models based on spatial considerations, Cement and Concrete Research, 36(2), 238-244. https://doi.org/10.1016/j.cemconres.2005.04.014
  4. Blaschke, R. (1985). Zur Einbindung der Flugasche in den Bindemittelstein, in : VGB - Sondertagung 1984, VGB - Bericht, Essen, 80-88.
  5. Chindaprasirta, P., Homwuttiwong, S., Sirivivatnanon, V. (2004). Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar, Cement and Concrete Research, 34(7), 1087-1092. https://doi.org/10.1016/j.cemconres.2003.11.021
  6. De Weerdt, K., Ben Haha, M., Le Saout, G., Kjellsen, K.O., Justnes, H., Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash, Cement and Concrete Research, 41(3), 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014
  7. Fraay, A.L.A., Bijen, J.M., de Haan, Y.M. (1989). The reaction of fly ash in concrete a critical examination, Cement and Concrete Research, 19(2), 235-246. https://doi.org/10.1016/0008-8846(89)90088-4
  8. Gartner, E. (2003). Industrially interesting approaches to "low-$CO_2$" cements, Cement and Concrete Research, 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  9. Khunthougkeaw, J., Tangtermsirikul, S. (2005). Model for simulating caronation of fly ash concrete, Journal of Materials in Civil Engineering, 17(5), 570-578. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(570)
  10. Li, S.Q., Roy, D.M. (1986). Investigation of relations between porosity, pore structure, and Cl diffusion of fly ash and blended cement pastes, Cement and Concrete Research, 16(5), 749-759. https://doi.org/10.1016/0008-8846(86)90049-9
  11. Nath, P., Sarker, P. (2011). Effect of fly ash on the durability properties of high strength concrete, Procedia Engineering, 14, 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
  12. Rahhal, V., Talero, R. (2004). Influence of two different fly ashes on the hydration of portland cements, Journal of Thermal Analysis and Calorimetry, 79, 191-205.
  13. Shayan, A., Diggins, R., Ivanusec, I. (1996). Effectiveness of fly ash in preventing deleterious expansion due to alkali-aggregate reaction in normal and steam-cured concrete, Cement and Concrete Research, 26(1), 153-164. https://doi.org/10.1016/0008-8846(95)00191-3
  14. Tkaczewska, E. (2014). Effect of size fraction and glass structure of siliceous fly ashes on fly ash cement hydration, Journal of Industrial and Engineering Chemistry, 20(1), 315-321. https://doi.org/10.1016/j.jiec.2013.03.032
  15. Torii, K., Kawamura, M. (1994). Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack, Cement and Concrete Research, 24(2), 361-370. https://doi.org/10.1016/0008-8846(94)90063-9